1-1hit |
Naihua YUAN Anh DINH Ha H. NGUYEN
A time-domain equalization (TEQ) algorithm is presented to shorten the effective channel impulse response to increase the transmission efficiency of the 54 Mbps IEEE 802.11a orthogonal frequency division multiplexing (OFDM) system. In solving the linear equation Aw = B for the optimum TEQ coefficients, A is shown to be Hermitian and positive definite. The LDLT and LU decompositions are used to factorize A to reduce the computational complexity. Simulation results show high performance gains at a data rate of 54 Mbps with moderate orders of TEQ finite impulse response (FIR) filter. The design and implementation of the algorithm in field programmable gate array (FPGA) are also presented. The regularities among the elements of A are exploited to reduce hardware complexity. The LDLT and LU decompositions are combined in hardware design to find the TEQ coefficients in less than 4 µs. To compensate the effective channel impulse response, a radix-4 pipeline fast Fourier transform (FFT) is implemented in performing zero forcing equalization. The hardware implementation information is provided and simulation results are compared to mathematical values to verify the functionalities of the chips running at 54 Mbps.