The search functionality is under construction.

Author Search Result

[Author] Nait Charif HAMMADI(3hit)

1-3hit
  • Dynamic Constructive Fault Tolerant Algorithm for Feedforward Neural Networks

    Nait Charif HAMMADI  Toshiaki OHMAMEUDA  Keiichi KANEKO  Hideo ITO  

     
    PAPER-Bio-Cybernetics and Neurocomputing

      Vol:
    E81-D No:1
      Page(s):
    115-123

    In this paper, a dynamic constructive algorithm for fault tolerant feedforward neural network, called DCFTA, is proposed. The algorithm starts with a network with single hidden neuron, and a new hidden unit is added dynamically to the network whenever it fails to converge. Before inserting the new hidden neuron into the network, only the weights connecting the new hidden neuron to the other neurons are trained (i. e. , updated) until there is no significant reduction of the output error. To generate a fault tolerant network, the relevance of each synaptic weight is estimated in each cycle, and only the weights which have their relevance less than a specified threshold are updated in that cycle. The loss of a connections between neurons (which are equivalent to stuck-at-0 faults) are assumed. The simulation results indicate that the network constructed by DCFTA has a significant fault tolerance ability.

  • On the Activation Function and Fault Tolerance in Feedforward Neural Networks

    Nait Charif HAMMADI  Hideo ITO  

     
    PAPER-Fault Tolerant Computing

      Vol:
    E81-D No:1
      Page(s):
    66-72

    Considering the pattern classification/recognition tasks, the influence of the activation function on fault tolerance property of feedforward neural networks is empirically investigated. The simulation results show that the activation function largely influences the fault tolerance and the generalization property of neural networks. It is found that, neural networks with symmetric sigmoid activation function are largely fault tolerant than the networks with asymmetric sigmoid function. However the close relation between the fault tolerance and the generalization property was not observed and the networks with asymmetric activation function slightly generalize better than the networks with the symmetric activation function. First, the influence of the activation function on fault tolerance property of neural networks is investigated on the XOR problem, then the results are generalized by evaluating the fault tolerance property of different NNs implementing different benchmark problems.

  • A Learning Algorithm for Fault Tolerant Feedforward Neural Networks

    Nait Charif HAMMADI  Hideo ITO  

     
    PAPER-Redundancy Techniques

      Vol:
    E80-D No:1
      Page(s):
    21-27

    A new learning algorithm is proposed to enhance fault tolerance ability of the feedforward neural networks. The algorithm focuses on the links (weights) that may cause errors at the output when they are open faults. The relevances of the synaptic weights to the output error (i.e. the sensitivity of the output error to the weight fault) are estimated in each training cycle of the standard backpropagation using the Taylor expansion of the output around fault-free weights. Then the weight giving the maximum relevance is decreased. The approach taken by the algorithm described in this paper is to prevent the weights from having large relevances. The simulation results indicate that the network trained with the proposed algorithm do have significantly better fault tolerance than the network trained with the standard backpropagation algorithm. The simulation results show that the fault tolerance and the generalization abilities are improved.