1-3hit |
Wataru KOBAYASHI Naoki FUJIWARA Takahiko SHINDO Yoshitaka OHISO Shigeru KANAZAWA Hiroyuki ISHII Koichi HASEBE Hideaki MATSUZAKI Mikitaka ITOH
We propose a novel structure that can reduce the power consumption and extend the transmission distance of an electro-absorption modulator integrated with a DFB (EADFB) laser. To overcome the trade-off relationship of the optical loss and chirp parameter of the EA modulator, we integrate a semiconductor optical amplifier (SOA) with an EADFB laser. With the proposed SOA assisted extended reach EADFB laser (AXEL) structure, the LD and SOA sections are operated by an electrically connected input port. We describe a design for AXEL that optimizes the LD and SOA length ratio when their total operation current is 80mA. By using the designed AXEL, the power consumption of a 10-Gbit/s, 1.55-µm EADFB laser is reduced by 1/2 and at the same time the transmission distance is extended from 80 to 100km.
Daiki KANSAKU Nobuhiro KAWASE Naoki FUJIWARA Faizan KHAN Arockiyasamy Periyanayaga KRISTY Kuruvankatil Dharmajan NISHA Toshitaka YAMAKAWA Kazushi IKEDA Yasuhiro HAYAKAWA Kenji MURAKAMI Masaru SHIMOMURA Hiroya IKEDA
To facilitate the reuse of environmental waste heat in our society, we have developed high-efficiency flexible thermoelectric power generators (TEPGs). In this study, we investigated the thermoelectromotive force (TEMF) and output power of a prototype device with 50 pairs of Π-type structures using a homemade measurement system for flexible TEPGs in order to evaluate their characteristics along the thickness direction. The prototype device consisted of C fabrics (CAFs) used as p-type materials, NiCu fabrics (NCFs) used as n-type materials, and Ag fabrics (AGFs) used as metal electrodes. Applying a temperature difference of 5K, we obtained a TEMF of 150μV and maximum output power of 6.4pW. The obtained TEMF was smaller than that expected from the Seebeck coefficients of each fabric, which is considered to be mainly because of the influence of contact thermal resistance at the semiconductor-fabric/AGF interfaces.
Takeshi FUJISAWA Kiyoto TAKAHATA Takashi TADOKORO Wataru KOBAYASHI Akira OHKI Naoki FUJIWARA Shigeru KANAZAWA Takayuki YAMANAKA Fumiyoshi KANO
High-performance 1.3-µm electroabsorption modulators integrated with DFB lasers are developed for long-reach 100 Gbit Ethernet. The dynamic extinction ratio of over 8-dB with the voltage swing of 2 V are achieved for the four LAN-WDM lanes (14 nm wavelength range) used in 100 Gbit Ethernet with the same modulator structure. The fabricated devices are packaged in butterfly modules and four-lane 40-km single mode fiber transmission at 25-Gbit/s operation is demonstrated. Further, a can-type transmitter optical subassembly is fabricated to reduce the cost and size of transmitter modules. The use of a low-dielectric-constant liquid crystal polymer transmission line makes the 3-dB bandwidth larger and enables 25-Gbit/s operation with CAN-TOSA module.