The search functionality is under construction.

Author Search Result

[Author] Naoki NISHIKAWA(2hit)

1-2hit
  • HiCrypt: A Specialized Translator for Symmetric Block Cipher and GPGPU

    Keisuke IWAI  Naoki NISHIKAWA  Takakazu KUROKAWA  

     
    PAPER

      Vol:
    E96-D No:12
      Page(s):
    2575-2586

    Many-core computer systems with GPUs are coming into mainstream use from high-end computing, including supercomputers, to embedded processors. Consequently, the implementation of cryptographic methods on GPGPU is also becoming popular because of such systems' performance. However, many factors affect the performance of GPUs. To cope with this problem, we developed a new translator, HiCrypt, which can generate an optimized GPGPU program written in both of CUDA and OpenCL from a cipher program written in standard C language with directives. Users must annotate only variables and an encoding/decoding function, which are characteristics of cipher programs, with directives. To evaluate the translator, five representative cipher programs are translated into CUDA and OpenCL programs by the translator. Generated programs perform high throughput almost identical to hand optimized programs for all five cipher programs. HiCrypt will contribute to development and evaluate of new and various symmetric block ciphers using GPGPU.

  • Throughput and Power Efficiency Evaluation of Block Ciphers on Kepler and GCN GPUs Using Micro-Benchmark Analysis

    Naoki NISHIKAWA  Keisuke IWAI  Hidema TANAKA  Takakazu KUROKAWA  

     
    PAPER-Fundamentals of Information Systems

      Vol:
    E97-D No:6
      Page(s):
    1506-1515

    Computer systems with GPUs are expected to become a strong methodology for high-speed encryption processing. Moreover, power consumption has remained a primary deterrent for such processing on devices of all sizes. However, GPU vendors are currently announcing their future roadmaps of GPU architecture development: Nvidia Corp. promotes the Kepler architecture and AMD Corp. emphasizes the GCN architecture. Therefore, we evaluated throughput and power efficiency of three 128-bit block ciphers on GPUs with recent Nvidia Kepler and AMD GCN architectures. From our experiments, whereas the throughput and per-watt throughput of AES-128 on Radeon HD 7970 (2048 cores) with GCN architecture are 205.0Gbps and 1.3Gbps/Watt respectively, those on Geforce GTX 680 (1536 cores) with Kepler architecture are, respectively, 63.9Gbps and 0.43Gbps/W; an approximately 3.2 times throughput difference occurs between AES-128 on the two GPUs. Next, we investigate the reasons for the throughput difference using our micro-benchmark suites. According to the results, we speculate that to ameliorate Kepler GPUs as co-processor of block ciphers, the arithmetic and logical instructions must be improved in terms of software and hardware.