The search functionality is under construction.

Author Search Result

[Author] Nicodimus RETDIAN(2hit)

1-2hit
  • Design of N-path Notch Filter Circuits for Hum Noise Suppression in Biomedical Signal Acquisition

    Khilda AFIFAH  Nicodimus RETDIAN  

     
    PAPER-Electronic Circuits

      Pubricized:
    2020/04/17
      Vol:
    E103-C No:10
      Page(s):
    480-488

    Hum noise such as power line interference is one of the critical problems in the biomedical signal acquisition. Various techniques have been proposed to suppress power line interference. However, some of the techniques require more components and power consumption. The notch depth in the conventional N-path notch filter circuits needs a higher number of paths and switches off-resistance. It makes the conventional N-path notch filter less of efficiency to suppress hum noise. This work proposed the new N-path notch filter to hum noise suppression in biomedical signal acquisition. The new N-path notch filter achieved notch depth above 40dB with sampling frequency 50Hz and 60Hz. Although the proposed circuits use less number of path and switches off-resistance. The proposed circuit has been verified using artificial ECG signal contaminated by hum noise at frequency 50Hz and 60Hz. The output of N-path notch filter achieved a noise-free signal even if the sampling frequency changes.

  • Power Line Noise Reduction for Bio-Sensing Applications Using N-Path Notch Filter

    Nicodimus RETDIAN  Takeshi SHIMA  

     
    LETTER

      Vol:
    E100-A No:2
      Page(s):
    541-544

    Power line noise is one of critical problems in bio-sensing. Various approaches utilizing both analog and digital techniques has been proposed. However, these approaches need active circuits with a wide dynamic range. N-path notch filters which implementable using passive components can be a promising solution to this problem. However, the notch depth of a conventional N-path notch filter is limited by the number of path. A new N-path notch filter with additional S/H circuit is proposed. Simulation results show that the proposed topology improves the notch depth by 43dB.