The search functionality is under construction.

Author Search Result

[Author] Takeshi SHIMA(7hit)

1-7hit
  • A Wide-Band LCD Segment Driver IC without Sacrificing Low Output-Offset Variation

    Tetsuro ITAKURA  Takeshi SHIMA  Shigeru YAMADA  Hironori MINAMIZAKI  

     
    PAPER

      Vol:
    E77-A No:2
      Page(s):
    380-387

    This paper describes a segment driver IC for high-quality liquid-crystal-displays (LCDs). Major design issues in the segment driver IC are a wide signal bandwidth and excessive output-offset variation both within a chip and between chips. After clarifying the trade-off relation between the signal bandwidth and the output-offset variation originated from conventional sample-and-hold (S/H) circuits, two wide-band S/H circuits with low output-offset variation have been introduced. The basic ideas for the proposed S/H circuits are to improve timing of the sampling pulses applied to MOS analog switches and to prevent channel charge injection onto a storage capacitor when the switches turn off. The inter-chip offset-cancellation technique has been also introduced by using an additional S/H circuit. Two test chips were implemented using the above S/H circuits for demonstration purposes. The intra-chip output-offset standard deviation of 9.5 mVrms with a 3dB bandwidth of 50 MHz was achieved. The inter-chip output-offset standard deviation was reduced to 5.1 mVrms by using the inter-chip offset-cancellation technique. The evaluation of picture quality of an LCD using the chips shows the applicability of the proposed approaches to displays used for multimedia applications.

  • Power Line Noise Reduction for Bio-Sensing Applications Using N-Path Notch Filter

    Nicodimus RETDIAN  Takeshi SHIMA  

     
    LETTER

      Vol:
    E100-A No:2
      Page(s):
    541-544

    Power line noise is one of critical problems in bio-sensing. Various approaches utilizing both analog and digital techniques has been proposed. However, these approaches need active circuits with a wide dynamic range. N-path notch filters which implementable using passive components can be a promising solution to this problem. However, the notch depth of a conventional N-path notch filter is limited by the number of path. A new N-path notch filter with additional S/H circuit is proposed. Simulation results show that the proposed topology improves the notch depth by 43dB.

  • FOREWORD

    Takeshi SHIMA  

     
    FOREWORD

      Vol:
    E96-A No:2
      Page(s):
    401-401
  • SUPER-SPICE: A VLSI Circuit Simulator Based on SPICE2 and the Waveform Relaxation Method

    Takeshi SHIMA  

     
    LETTER-Silicon Devices and Integrated Circuits

      Vol:
    E69-E No:4
      Page(s):
    251-253

    This letter describes the program structure and performance toward a newly developed VLSI circuit simulator, called SUPER-SPICE. In the SUPER-SPICE program, the waveform relaxation method is implemented. A small circuit analyzer is based on SPICE2. Therefore, with attention paid to simulation modes, not only transient analysis, but also DC and DC transfer curves, can be simulated by the simulator. Further, many kinds of nonlinear device models in SPICE2 are permitted to be used for VLSI circuit simulation.

  • Multiple-Valued Memory Using Floating Gate Devices

    Takeshi SHIMA  Stephanie RINNERT  

     
    PAPER

      Vol:
    E76-C No:3
      Page(s):
    393-402

    This paper discusses multiple-valued memory circuit using floating gate devices. It is an object of the paper to provide a new and improved analog memory device, which permits the memory of an amount of charges that accurately corresponds to analog information to be stored.

  • Noise Reduction Technique of Switched-Capacitor Low-Pass Filter Using Adaptive Configuration

    Retdian NICODIMUS  Takeshi SHIMA  

     
    PAPER

      Vol:
    E99-A No:2
      Page(s):
    540-546

    Noise and area consumption has been a trade-off in circuit design. Especially for switched-capacitor filters (SCF), kT/C noise gives a limitation to the minimum value of unit capacitance. In case of SCFs with a large capacitance spread, this limitation will result in a large area consumption due to large capacitors. This paper introduces a technique to reduce capacitance spread using charge scaling. It will be shown that this technique can reduce total capacitance of SCFs without deteriorating their noise performances. A design method to reduce the output noise of SC low-pass filters (LPF) based on the combination of cut-set scaling, charge scaling and adaptive configuration is proposed. The proposed technique can reduce the output noise voltage by 30% for small input signals.

  • A Learning Algorithm for a Neural Network LSI with Restricted Integer Weights

    Tomohisa KIMURA  Takeshi SHIMA  

     
    PAPER-Neural Networks and Chips

      Vol:
    E80-C No:7
      Page(s):
    983-989

    A novel learning algorithm for a neural network LSI which has low resolution synapse weights is proposed. Following a brief discussion of the synapse weight adaptation mechanism in the gradient descent scheme, we propose a way of achieving relaxation from the influence of discretized weight. Restriction of the number of synapses to be updated in one learning iteration is effective to relax the influence. Simulation results support the effectiveness of this learning algorithm. Low resolution synapses will be practical to realize large-scale neural network LSIs.