The search functionality is under construction.

Author Search Result

[Author] Retdian NICODIMUS(6hit)

1-6hit
  • Implementation of Low-Noise Switched-Capacitor Low-Pass Filter with Small Capacitance Spread

    Retdian NICODIMUS  Shigetaka TAKAGI  

     
    PAPER

      Vol:
    E96-A No:2
      Page(s):
    477-485

    A design methodology for implementation of low-noise switched-capacitor low-pass filter (SC LPF) with small capacitance spread is proposed. The proposed method is focused on the reduction of operational amplifier noise transfer gain at low frequencies and the reduction of total capacitance. A new SC LPF topology is proposed in order to adapt the correlated double sampling and charge scaling technique at the same time. Design examples show that proposed filter reduces the total capacitance by 65% or more compared to the conventional one without having significant increase in noise transfer gain.

  • Capacitance Reduction Technique for Switched-Capacitor Circuits Based on Charge Distribution and Partial Charge Transfer

    Retdian NICODIMUS  Shigetaka TAKAGI  

     
    PAPER

      Vol:
    E94-A No:2
      Page(s):
    625-632

    This paper proposes a technique to reduce the capacitance spread in switched-capacitor (SC) filters. The proposed technique is based on a simple charge distribution and partial charge transfer which is applicable to various integrator topologies. An implementation example on an existing integrator topology and a design example of a 2nd-order SC low-pass filter are given to demonstrate the performance of the proposed technique. A design example of an SC filter show that the filter designed using the proposed technique has an approximately 23% less total capacitance than the one of SC low-pass filter with conventional capacitance spread reduction technique.

  • Implementation of Low-Noise Switched-Capacitor Integrators with Small Capacitors

    Retdian NICODIMUS  Shigetaka TAKAGI  

     
    PAPER

      Vol:
    E95-A No:2
      Page(s):
    447-455

    A technique to reduce noise transfer functions (NTF) of switched-capacitor (SC) integrators without changing their signal transfer functions (STF) is proposed. The proposed technique based on a simple reconnection scheme of multiple sampling capacitors. It can be implemented into any SC integrators as long as they have a transfer delay. A design strategy is also given to reduce the effect of parasitic capacitors. An SC integrator with a small total capacitance and a low noise transfer gain based on the proposed technique is also proposed. For a given design example, the total capacitance and the simulated noise transfer gain of the proposed SC integrator are 37% and 90% less than the conventional one.

  • Design of Wideband Linear Voltage-to-Current Converters

    Retdian NICODIMUS  Shigetaka TAKAGI  

     
    PAPER

      Vol:
    E93-A No:2
      Page(s):
    382-389

    This paper proposes a voltage-to-current converter with nested feedback loop configuration to achieve high loop gain without reducing the bandwidth. Simulation results using 0.18-µm CMOS process parameters show that the proposed circuit has a good linearity performance. The simulated bandwidth is 350 MHz. The THD improvement of the proposed circuit is more than 60 dB compared to the one of a common gate circuit under a same total current consumption of 10.4 mA.

  • Compensation Technique for Current-to-Voltage Converters for LSI Patch Clamp System Using High Resistive Feedback

    Hiroki YOTSUDA  Retdian NICODIMUS  Masahiro KUBO  Taro KOSAKA  Nobuhiko NAKANO  

     
    PAPER

      Vol:
    E99-A No:2
      Page(s):
    531-539

    Patch clamp measurement technique is one of the most important techniques in the field of electrophysiology. The elucidation of the channels, nerve cells, and brain activities as well as contribution of the treatment of neurological disorders is expected from the measurement of ion current. A current-to-voltage converter, which is the front end circuit of the patch clamp measurement system is fabricated using 0.18µm CMOS technology. The current-to-voltage converter requires a resistance as high as 50MΩ as a feedback resistor in order to ensure a high signal-to-noise ratio for very small signals. However, the circuit becomes unstable due to the large parasitic capacitance between the poly layer and the substrate of the on-chip feedback resistor and the instability causes the peaking at lower frequency. The instability of a current-to-voltage converter with a high-resistance as a feedback resistor is analyzed theoretically. A compensation circuit to stabilize the amplifier by driving the N-well under poly resistor to suppress the effect of parasitic capacitance using buffer circuits is proposed. The performance of the proposed circuit is confirmed by both simulation and measurement of fabricated chip. The peaking in frequency characteristic is suppressed properly by the proposed method. Furthermore, the bandwidth of the amplifier is expanded up to 11.3kHz, which is desirable for a patch clamp measurement. In addition, the input referred rms noise with the range of 10Hz ∼ 10kHz is 2.09 Arms and is sufficiently reach the requirement for measure of both whole-cell and a part of single-channel recordings.

  • Noise Reduction Technique of Switched-Capacitor Low-Pass Filter Using Adaptive Configuration

    Retdian NICODIMUS  Takeshi SHIMA  

     
    PAPER

      Vol:
    E99-A No:2
      Page(s):
    540-546

    Noise and area consumption has been a trade-off in circuit design. Especially for switched-capacitor filters (SCF), kT/C noise gives a limitation to the minimum value of unit capacitance. In case of SCFs with a large capacitance spread, this limitation will result in a large area consumption due to large capacitors. This paper introduces a technique to reduce capacitance spread using charge scaling. It will be shown that this technique can reduce total capacitance of SCFs without deteriorating their noise performances. A design method to reduce the output noise of SC low-pass filters (LPF) based on the combination of cut-set scaling, charge scaling and adaptive configuration is proposed. The proposed technique can reduce the output noise voltage by 30% for small input signals.