The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Osamu YOSHIE(1hit)

1-1hit
  • A Reinforcement Learning Method for Optical Thin-Film Design Open Access

    Anqing JIANG  Osamu YOSHIE  

     
    PAPER-Optoelectronics

      Pubricized:
    2021/08/24
      Vol:
    E105-C No:2
      Page(s):
    95-101

    Machine learning, especially deep learning, is dramatically changing the methods associated with optical thin-film inverse design. The vast majority of this research has focused on the parameter optimization (layer thickness, and structure size) of optical thin-films. A challenging problem that arises is an automated material search. In this work, we propose a new end-to-end algorithm for optical thin-film inverse design. This method combines the ability of unsupervised learning, reinforcement learning and includes a genetic algorithm to design an optical thin-film without any human intervention. Furthermore, with several concrete examples, we have shown how one can use this technique to optimize the spectra of a multi-layer solar absorber device.