The search functionality is under construction.

Author Search Result

[Author] Pao-Ann HSIUNG(4hit)

1-4hit
  • Hardware-Software Timing Coverification of Distributed Embedded Systems

    Jih-Ming FU  Trong-Yen LEE  Pao-Ann HSIUNG  Sao-Jie CHEN  

     
    PAPER-VLSI Systems

      Vol:
    E83-D No:9
      Page(s):
    1731-1740

    Most of current codesign tools or methodologies only support validation in the form of cosimulation and testing of design alternatives. The results of hardware-software codesign of a distributed system are often not verified, because they are not easily verifiable. In this paper, we propose a new formal coverification approach based on linear hybrid automata, and an algorithm for automatically converting codesign results to the linear hybrid automata framework. Our coverification approach allows automatic verification of real-time constraints such as hard deadlines. Another advantage is that the proposed approach is suitable for verifying distributed systems with arbitrary communication patterns and system architecture. The feasibility of our approach is demonstrated through several application examples. The proposed approach has also been successfully used in verifying deadline violations when there are inter-task communications between tasks with different period lengths.

  • DESC: A Hardware-Software Codesign Methodology for Distributed Embedded Systems

    Trong-Yen LEE  Pao-Ann HSIUNG  Sao-Jie CHEN  

     
    PAPER-VLSI Systems

      Vol:
    E84-D No:3
      Page(s):
    326-339

    The hardware-software codesign of distributed embedded systems is a more challenging task, because each phase of codesign, such as copartitioning, cosynthesis, cosimulation, and coverification must consider the physical restrictions imposed by the distributed characteristics of such systems. Distributed systems often contain several similar parts for which design reuse techniques can be applied. Object-oriented (OO) codesign approach, which allows physical restriction and object design reuse, is adopted in our newly proposed Distributed Embedded System Codesign (DESC) methodology. DESC methodology uses three types of models: Object Modeling Technique (OMT) models for system description and input, Linear Hybrid Automata (LHA) models for internal modeling and verification, and SES/workbench simulation models for performance evaluation. A two-level partitioning algorithm is proposed specifically for distributed systems. Software is synthesized by task scheduling and hardware is synthesized by system-level and object-oriented techniques. Design alternatives for synthesized hardware-software systems are then checked for design feasibility through rapid prototyping using hardware-software emulators. Through a case study on a Vehicle Parking Management System (VPMS), we depict each design phase of the DESC methodology to show benefits of OO codesign and the necessity of a two-level partitioning algorithm.

  • Hardware-Software Multi-Level Partitioning for Distributed Embedded Multiprocessor Systems

    Trong-Yen LEE  Pao-Ann HSIUNG  Sao-Jie CHEN  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E84-A No:2
      Page(s):
    614-626

    A novel Multi-Level Partitioning (MLP) technique taking into account real-world constraints for hardware-software partitioning in Distributed Embedded Multiprocessor Systems (DEMS) is proposed. This MLP algorithm uses a gradient metric based on hardware-software cost and performance as the core metric for selection of optimal partitions and consists of three nested levels. The innermost level is a simple binary search that allows quick evaluations of a large number of possible partitions. The middle level iterates over different possible allocations of processors (that execute software) to subsystems. The outermost level iterates over the number of processors and the hardware cost range. Heuristics are applied to each level to avoid the expensive exhaustive search. The application of MLP as a recently purposed Distributed Embedded System Codesign (DESC) methodology shows its feasibility. Comparisons between real-world examples partitioned using MLP and using other existing techniques demonstrate contrasting strengths of MLP. Sharing, clustering, and hierarchical system model are some important features of MLP, which contribute towards producing more optimal partition results.

  • MOBnet: An Extended Petri Net Model for the Concurrent Object-Oriented System-Level Synthesis of Multiprocessor Systems

    Pao-Ann HSIUNG  Trong-Yen LEE  Sao-Jie CHEN  

     
    PAPER-Computer Hardware and Design

      Vol:
    E80-D No:2
      Page(s):
    232-242

    A formal system-level synthesis model for the concurrent object-oriented design of parallel computer systems, called Multi-token Object-oriented Bi-directional net (MOBnet), is proposed. The MOBnet model extends the standard Petri net by defining (1) multiple tokens to represent different kinds of synthesis control information, (2) object-oriented nodes (places) to denote the system parts under synthesis, and (3) bi-directional arcs to model the design completion check and synthesis rollback operations. In this paper, we first show that MOBnet can serve as a pre-fabrication design methodology analysis tool in ways such as class hierarchy construction, design specification comparison, reachability analysis, and concurrent process management and analysis. We then formally prove MOBnet to be a valid model for concurrent synthesis and give experimental application examples to verify. Finally, solution schemes for the design completion check and synthesis rollback problems are formally validated by analyzing the dynamic behavior of MOBnet, and experimentally illustrated through examples.