1-3hit |
Sylvain TOURANCHEAU Patrick LE CALLET Dominique BARBA
In this paper, the impact of display on quality assessment is addressed. Subjective quality assessment experiments have been performed on both LCD and CRT displays. Two sets of still images and two sets of moving pictures have been assessed using either an ACR or a SAMVIQ protocol. Altogether, eight experiments have been led. Results are presented and discussed, some differences are pointed out. Concerning moving pictures, these differences seem to be mainly due to LCD moving artefacts such as motion blur. LCD motion blur has been measured objectively and with psycho-physics experiments. A motion-blur metric based on the temporal characteristics of LCD can be defined. A prediction model have been then designed which predict the differences of perceived quality between CRT and LCD. This motion-blur-based model enables the estimation of perceived quality on LCD with respect to the perceived quality on CRT. Technical solutions to LCD motion blur can thus be evaluated on natural contents by this mean.
Marcus BARKOWSKY Enrico MASALA Glenn VAN WALLENDAEL Kjell BRUNNSTRÖM Nicolas STAELENS Patrick LE CALLET
The current development of video quality assessment algorithms suffers from the lack of available video sequences for training, verification and validation to determine and enhance the algorithm's application scope. The Joint Effort Group of the Video Quality Experts Group (VQEG-JEG) is currently driving efforts towards the creation of large scale, reproducible, and easy to use databases. These databases will contain bitstreams of recent video encoders (H.264, H.265), packet loss impairment patterns and impaired bitstreams, pre-parsed bitstream information into files in XML syntax, and well-known objective video quality measurement outputs. The database is continuously updated and enlarged using reproducible processing chains. Currently, more than 70,000 sequences are available for statistical analysis of video quality measurement algorithms. New research questions are posed as the database is designed to verify and validate models on a very large scale, testing and validating various scopes of applications, while subjective assessment has to be limited to a comparably small subset of the database. Special focus is given on the principles guiding the database development, and some results are given to illustrate the practical usefulness of such a database with respect to the detailed new research questions.
Patrick LE CALLET Christian VIARD-GAUDIN Stephane PECHARD Emilie CAILLAULT
This paper describes an objective measurement method designed to assess the perceived quality for digital videos. The proposed approach can be used either in the context of a reduced reference quality assessment or in the more challenging situation where no reference is available. In that way, it can be deployed in a QoS monitoring strategy in order to control the end-user perceived quality. The originality of the approach relies on the very limited computation resources which are involved, such a system could be integrated quite easily in a real time application. It uses a convolutional neural network (CNN) that allows a continuous time scoring of the video. Experiments conducted on different MPEG-2 videos, with bit rates ranging from 2 to 6 Mbits/s, show the effectiveness of the proposed approach. More specifically, a linear correlation criterion, between objective and subjective scoring, ranging from 0.90 up to 0.95 has been obtained on a set of typical TV videos in the case of a reduced reference assessment. Without any reference to the original video, the correlation criteria remains quite satisfying since it still lies between 0.85 and 0.90, which is quite high with respect to the difficulty of the task, and equivalent and more in some cases than the traditional PSNR, which is a full reference measurement.