The search functionality is under construction.

Author Search Result

[Author] Peng FAN(8hit)

1-8hit
  • Design and Implementation of LoRa-Based Wireless Sensor Network with Embedded System for Smart Agricultural Recycling Rapid Processing Factory

    Chia-Yu WANG  Chia-Hsin TSAI  Sheng-Chung WANG  Chih-Yu WEN  Robert Chen-Hao CHANG  Chih-Peng FAN  

     
    INVITED PAPER

      Pubricized:
    2021/02/25
      Vol:
    E104-D No:5
      Page(s):
    563-574

    In this paper, the effective Long Range (LoRa) based wireless sensor network is designed and implemented to provide the remote data sensing functions for the planned smart agricultural recycling rapid processing factory. The proposed wireless sensor network transmits the sensing data from various sensors, which measure the values of moisture, viscosity, pH, and electrical conductivity of agricultural organic wastes for the production and circulation of organic fertilizers. In the proposed wireless sensor network design, the LoRa transceiver module is used to provide data transmission functions at the sensor node, and the embedded platform by Raspberry Pi module is applied to support the gateway function. To design the cloud data server, the MySQL methodology is applied for the database management system with Apache software. The proposed wireless sensor network for data communication between the sensor node and the gateway supports a simple one-way data transmission scheme and three half-duplex two-way data communication schemes. By experiments, for the one-way data transmission scheme under the condition of sending one packet data every five seconds, the packet data loss rate approaches 0% when 1000 packet data is transmitted. For the proposed two-way data communication schemes, under the condition of sending one packet data every thirty seconds, the average packet data loss rates without and with the data-received confirmation at the gateway side can be 3.7% and 0%, respectively.

  • A Fast Algorithm for Liquid Voting on Blockchain

    Xiaoping ZHOU  Peng LI  Yulong ZENG  Xuepeng FAN  Peng LIU  Toshiaki MIYAZAKI  

     
    PAPER

      Pubricized:
    2021/05/17
      Vol:
    E104-D No:8
      Page(s):
    1163-1171

    Blockchain-based voting, including liquid voting, has been extensively studied in recent years. However, it remains challenging to implement liquid voting on blockchain using Ethereum smart contract. The challenge comes from the gas limit, which is that the number of instructions for processing a ballot cannot exceed a certain amount. This restricts the application scenario with respect to algorithms whose time complexity is linear to the number of voters, i.e., O(n). As the blockchain technology can well share and reuse the resources, we study a model of liquid voting on blockchain and propose a fast algorithm, named Flash, to eliminate the restriction. The key idea behind our algorithm is to shift some on-chain process to off-chain. In detail, we first construct a Merkle tree off-chain which contains all voters' properties. Second, we use Merkle proof and interval tree to process each ballot with O(log n) on-chain time complexity. Theoretically, the algorithm can support up to 21000 voters with respect to the current gas limit on Ethereum. Experimentally, the result implies that the consumed gas fee remains at a very low level when the number of voters increases. This means our algorithm makes liquid voting on blockchain practical even for massive voters.

  • Fast Algorithm Designs for Low-Complexity 44 Discrete Cosine Transform

    Chih-Peng FAN  

     
    LETTER-Digital Signal Processing

      Vol:
    E88-A No:11
      Page(s):
    3225-3229

    In the letter, the fast one-dimensional (1-D) and two-dimensional (2-D) algorithms for realizing low-complexity 44 discrete cosine transform (DCT) for H.264 applications are developed. Through applying matrix utilizations with Kronecker product and direct sum, the efficient fast 2-D 44 DCT algorithm can be developed from the proposed fast 1-D 44 DCT algorithm by matrix decompositions. The fast 1-D and 2-D low-complexity 44 DCT algorithms requires fewer multiplications and additions than other fast DCT algorithms. Owing to regular modularity, the proposed fast algorithms can achieve real-time H.264 video signal processing with VLSI implementation.

  • Implementations of Low-Cost Hardware Sharing Architectures for Fast 88 and 44 Integer Transforms in H.264/AVC

    Chih-Peng FAN  Yu-Lian LIN  

     
    LETTER-Digital Signal Processing

      Vol:
    E90-A No:2
      Page(s):
    511-516

    In this paper, novel hardware sharing architectures are proposed for realizations of fast 44 and 88 forward/inverse integer transforms in H.264/AVC applications. Based on matrix factorizations, the cost-effective architectures for fast one-dimensional (1-D) 44 and 88 forward/inverse integer transforms can be derived through the Kronecker and direct sum operations. By applying the concept of hardware sharing, the proposed hardware schemes for fast integer transforms need a smaller number of shifters and adders than the direct realization architecture, where the direct architecture just implements the individual 44 and individual 88 integer transforms independently. With low hardware cost and regular modularity, the proposed hardware sharing architectures can process up to 125 MHz with the cost-effective area and are suitable for VLSI implementations to accomplish the H.264/AVC signal processing.

  • Speech Recognition for Air Traffic Control via Feature Learning and End-to-End Training

    Peng FAN  Xiyao HUA  Yi LIN  Bo YANG  Jianwei ZHANG  Wenyi GE  Dongyue GUO  

     
    PAPER-Speech and Hearing

      Pubricized:
    2023/01/23
      Vol:
    E106-D No:4
      Page(s):
    538-544

    In this work, we propose a new automatic speech recognition (ASR) system based on feature learning and an end-to-end training procedure for air traffic control (ATC) systems. The proposed model integrates the feature learning block, recurrent neural network (RNN), and connectionist temporal classification loss to build an end-to-end ASR model. Facing the complex environments of ATC speech, instead of the handcrafted features, a learning block is designed to extract informative features from raw waveforms for acoustic modeling. Both the SincNet and 1D convolution blocks are applied to process the raw waveforms, whose outputs are concatenated to the RNN layers for the temporal modeling. Thanks to the ability to learn representations from raw waveforms, the proposed model can be optimized in a complete end-to-end manner, i.e., from waveform to text. Finally, the multilingual issue in the ATC domain is also considered to achieve the ASR task by constructing a combined vocabulary of Chinese characters and English letters. The proposed approach is validated on a multilingual real-world corpus (ATCSpeech), and the experimental results demonstrate that the proposed approach outperforms other baselines, achieving a 6.9% character error rate.

  • Fast Structural Two Dimensional Discrete Cosine Transform Algorithms

    Jar-Ferr YANG  Chih-Peng FAN  

     
    PAPER-Digital Signal Processing

      Vol:
    E81-A No:6
      Page(s):
    1210-1215

    The matrix decomposition of transformation associated with the Kronecker product not only provides a thoughtful structure in hardware realization but also bestows a skillful tool for complexity evaluation. Hence, there are several fast algorithms developed to achieve efficient computation of two-dimensional (2-D) discrete cosine transform (DCT) with matrix decomposition techniques. However, we found that their derivations associated with their computation structures were not shown formally. In this paper, we propose formal derivations to remedy their deficiencies to achieve more structural 2-D DCT and inverse DCT (IDCT) algorithms. Furthermore, we also show that the remedied algorithms are with less computational complexity and more regular structure for realization.

  • Fast 2-Dimensional 88 Integer Transform Algorithm Design for H.264/AVC Fidelity Range Extensions

    Chih-Peng FAN  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E89-D No:12
      Page(s):
    3006-3011

    In this letter, efficient two-dimensional (2-D) fast algorithms for realizations of 88 forward and inverse integer transforms in H.264/AVC fidelity range extensions (FRExt) are proposed. Based on matrix factorizations with Kronecker product and direct sum operations, efficient fast 2-D 88 forward and inverse integer transforms can be derived from the one-dimensional (1-D) fast 88 forward and inverse integer transforms through matrix operations. The proposed fast 2-D 88 forward and inverse integer transform designs don't require transpose memory in hardware realizations. The fast 2-D 88 integer transforms require fewer latency delays and provide a larger throughput rate than the row-column based method. With regular modularity, the proposed fast algorithms are suitable for VLSI implementations to achieve H.264/AVC FRExt high-profile signal processing.

  • Centralized Fast Slant Transform Algorithms

    Jar-Ferr YANG  Chih-Peng FAN  

     
    PAPER-Digital Signal Processing

      Vol:
    E80-A No:4
      Page(s):
    705-711

    In this paper,we propose general fast one dimensional (1-D) and two dimensional (2-D) slant transform algorithms. By introducing simple and structural permutations, the heavily computational operations are centralized to become standardized and localized processing units. The total numbers of multiplications for the proposed fast 1-D and 2-D slant transforms are less than those of the existed methods. With advantages of convenient description in formulation and efficient computation for realization, the proposed fast slant transforms are suitable for applications in signal compression and pattern recognition.