The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Pilsung KANG(7hit)

1-7hit
  • One-Class Naïve Bayesian Classifier for Toll Fraud Detection

    Pilsung KANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E97-D No:5
      Page(s):
    1353-1357

    In this paper, a one-class Naïve Bayesian classifier (One-NB) for detecting toll frauds in a VoIP service is proposed. Since toll frauds occur irregularly and their patterns are too diverse to be generalized as one class, conventional binary-class classification is not effective for toll fraud detection. In addition, conventional novelty detection algorithms have struggled with optimizing their parameters to achieve a stable detection performance. In order to resolve the above limitations, the original Naïve Bayesian classifier is modified to handle the novelty detection problem. In addition, a genetic algorithm (GA) is employed to increase efficiency by selecting significant variables. In order to verify the performance of One-NB, comparative experiments using five well-known novelty detectors and three binary classifiers are conducted over real call data records (CDRs) provided by a Korean VoIP service company. The experimental results show that One-NB detects toll frauds more accurately than other novelty detectors and binary classifiers when the toll frauds rates are relatively low. In addition, The performance of One-NB is found to be more stable than the benchmark methods since no parameter optimization is required for One-NB.

  • GPU-Accelerated Stochastic Simulation of Biochemical Networks

    Pilsung KANG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2017/12/20
      Vol:
    E101-D No:3
      Page(s):
    786-790

    We present a GPU (graphics processing unit) accelerated stochastic algorithm implementation for simulating biochemical reaction networks using the latest NVidia architecture. To effectively utilize the massive parallelism offered by the NVidia Pascal hardware, we apply a set of performance tuning methods and guidelines such as exploiting the architecture's memory hierarchy in our algorithm implementation. Based on our experimentation results as well as comparative analysis using CPU-based implementations, we report our initial experiences on the performance of modern GPUs in the context of scientific computing.

  • Implementing Adaptive Decisions in Stochastic Simulations via AOP

    Pilsung KANG  

     
    LETTER-Software Engineering

      Pubricized:
    2018/04/05
      Vol:
    E101-D No:7
      Page(s):
    1950-1953

    We present a modular way of implementing adaptive decisions in performing scientific simulations. The proposed method employs modern software engineering mechanisms to allow for better software management in scientific computing, where software adaptation has often been implemented manually by the programmer or by using in-house tools, which complicates software management over time. By applying the aspect-oriented programming (AOP) paradigm, we consider software adaptation as a separate concern and, using popular AOP constructs, implement adaptive decision separately from the original code base, thereby improving software management. We demonstrate the effectiveness of our approach with applications to stochastic simulation software.

  • Software Analysis Techniques for Detecting Data Race Open Access

    Pilsung KANG  

     
    SURVEY PAPER-Fundamentals of Information Systems

      Pubricized:
    2017/08/09
      Vol:
    E100-D No:11
      Page(s):
    2674-2682

    Data races are a multithreading bug. They occur when at least two concurrent threads access a shared variable, and at least one access is a write, and the shared variable is not explicitly protected from simultaneous accesses of the threads. Data races are well-known to be hard to debug, mainly because the effect of the conflicting accesses depends on the interleaving of the thread executions. Hence there have been a multitude of research efforts on detecting data races through sophisticated techniques of software analysis by automatically analyzing the behavior of computer programs. Software analysis techniques can be categorized according to the time they are applied: static or dynamic. Static techniques derive program information, such as invariants or program correctness, before runtime from source code, while dynamic techniques examine the behavior at runtime. In this paper, we survey data race detection techniques in each of these two approaches.

  • Benchmarking Modern Edge Devices for AI Applications

    Pilsung KANG  Jongmin JO  

     
    PAPER-Computer System

      Pubricized:
    2020/12/08
      Vol:
    E104-D No:3
      Page(s):
    394-403

    AI (artificial intelligence) has grown at an overwhelming speed for the last decade, to the extent that it has become one of the mainstream tools that drive the advancements in science and technology. Meanwhile, the paradigm of edge computing has emerged as one of the foremost areas in which applications using the AI technology are being most actively researched, due to its potential benefits and impact on today's widespread networked computing environments. In this paper, we evaluate two major entry-level offerings in the state-of-the-art edge device technology, which highlight increased computing power and specialized hardware support for AI applications. We perform a set of deep learning benchmarks on the devices to measure their performance. By comparing the performance with other GPU (graphics processing unit) accelerated systems in different platforms, we assess the computational capability of the modern edge devices featuring a significant amount of hardware parallelism.

  • OpenACC Parallelization of Stochastic Simulations on GPUs

    Pilsung KANG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/05/17
      Vol:
    E102-D No:8
      Page(s):
    1565-1568

    We present an OpenACC-based parallelization implementation of stochastic algorithms for simulating biochemical reaction networks on modern GPUs (graphics processing units). To investigate the effectiveness of using OpenACC for leveraging the massive hardware parallelism of the GPU architecture, we carefully apply OpenACC's language constructs and mechanisms to implementing a parallel version of stochastic simulation algorithms on the GPU. Using our OpenACC implementation in comparison to both the NVidia CUDA and the CPU-based implementations, we report our initial experiences on OpenACC's performance and programming productivity in the context of GPU-accelerated scientific computing.

  • Accelerating Stochastic Simulations on GPUs Using OpenCL

    Pilsung KANG  

     
    LETTER-Fundamentals of Information Systems

      Pubricized:
    2019/07/23
      Vol:
    E102-D No:11
      Page(s):
    2253-2256

    Since first introduced in 2008 with the 1.0 specification, OpenCL has steadily evolved over the decade to increase its support for heterogeneous parallel systems. In this paper, we accelerate stochastic simulation of biochemical reaction networks on modern GPUs (graphics processing units) by means of the OpenCL programming language. In implementing the OpenCL version of the stochastic simulation algorithm, we carefully apply its data-parallel execution model to optimize the performance provided by the underlying hardware parallelism of the modern GPUs. To evaluate our OpenCL implementation of the stochastic simulation algorithm, we perform a comparative analysis in terms of the performance using the CPU-based cluster implementation and the NVidia CUDA implementation. In addition to the initial report on the performance of OpenCL on GPUs, we also discuss applicability and programmability of OpenCL in the context of GPU-based scientific computing.