The search functionality is under construction.

Author Search Result

[Author] Ping LEI(2hit)

1-2hit
  • Approximate FPGA-Based Multipliers Using Carry-Inexact Elementary Modules

    Yi GUO  Heming SUN  Ping LEI  Shinji KIMURA  

     
    PAPER

      Vol:
    E103-A No:9
      Page(s):
    1054-1062

    Approximate multiplier design is an effective technique to improve hardware performance at the cost of accuracy loss. The current approximate multipliers are mostly ASIC-based and are dedicated for one particular application. In contrast, FPGA has been an attractive choice for many applications because of its high performance, reconfigurability, and fast development round. This paper presents a novel methodology for designing approximate multipliers by employing the FPGA-based fabrics (primarily look-up tables and carry chains). The area and latency are significantly reduced by applying approximation on carry results and cutting the carry propagation path in the multiplier. Moreover, we explore higher-order multipliers on architectural space by using our proposed small-size approximate multipliers as elementary modules. For different accuracy-hardware requirements, eight configurations for approximate 8×8 multiplier are discussed. In terms of mean relative error distance (MRED), the error of the proposed 8×8 multiplier is as low as 1.06%. Compared with the exact multiplier, our proposed design can reduce area by 43.66% and power by 24.24%. The critical path latency reduction is up to 29.50%. The proposed multiplier design has a better accuracy-hardware tradeoff than other designs with comparable accuracy. Moreover, image sharpening processing is used to assess the efficiency of approximate multipliers on application.

  • Design of Low-Cost Approximate Multipliers Based on Probability-Driven Inexact Compressors

    Yi GUO  Heming SUN  Ping LEI  Shinji KIMURA  

     
    PAPER

      Vol:
    E102-A No:12
      Page(s):
    1781-1791

    Approximate computing has emerged as a promising approach for error-tolerant applications to improve hardware performance at the cost of some loss of accuracy. Multiplication is a key arithmetic operation in these applications. In this paper, we propose a low-cost approximate multiplier design by employing new probability-driven inexact compressors. This compressor design is introduced to reduce the height of partial product matrix into two rows, based on the probability distribution of the sum result of partial products. To compensate the accuracy loss of the multiplier, a grouped error recovery scheme is proposed and achieves different levels of accuracy. In terms of mean relative error distance (MRED), the accuracy losses of the proposed multipliers are from 1.07% to 7.86%. Compared with the Wallace multiplier using 40nm process, the most accurate variant of the proposed multipliers can reduce power by 59.75% and area by 42.47%. The critical path delay reduction is larger than 12.78%. The proposed multiplier design has a better accuracy-performance trade-off than other designs with comparable accuracy. In addition, the efficiency of the proposed multiplier design is assessed in an image processing application.