The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Qianqian LI(1hit)

1-1hit
  • Cross-Corpus Speech Emotion Recognition Based on Causal Emotion Information Representation Open Access

    Hongliang FU  Qianqian LI  Huawei TAO  Chunhua ZHU  Yue XIE  Ruxue GUO  

     
    LETTER-Speech and Hearing

      Pubricized:
    2024/04/12
      Vol:
    E107-D No:8
      Page(s):
    1097-1100

    Speech emotion recognition (SER) is a key research technology to realize the third generation of artificial intelligence, which is widely used in human-computer interaction, emotion diagnosis, interpersonal communication and other fields. However, the aliasing of language and semantic information in speech tends to distort the alignment of emotion features, which affects the performance of cross-corpus SER system. This paper proposes a cross-corpus SER model based on causal emotion information representation (CEIR). The model uses the reconstruction loss of the deep autoencoder network and the source domain label information to realize the preliminary separation of causal features. Then, the causal correlation matrix is constructed, and the local maximum mean difference (LMMD) feature alignment technology is combined to make the causal features of different dimensions jointly distributed independent. Finally, the supervised fine-tuning of labeled data is used to achieve effective extraction of causal emotion information. The experimental results show that the average unweighted average recall (UAR) of the proposed algorithm is increased by 3.4% to 7.01% compared with the latest partial algorithms in the field.