The search functionality is under construction.

Author Search Result

[Author] Qiping CAO(5hit)

1-5hit
  • An Elastic Net Learning Algorithm for Edge Linking of Images

    Jiahai WANG  Zheng TANG  Qiping CAO  Xinshun XU  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E86-A No:11
      Page(s):
    2879-2886

    Edge linking is a fundamental computer vision task, yet presents difficulties arising from the lack of information in the image. Viewed as a constrained optimization problem, it is NP hard-being isomorphic to the classical Traveling Salesman Problem. This paper proposes a gradient ascent learning algorithm of the elastic net approach for edge linking of images. The learning algorithm has two phases: an elastic net phase, and a gradient ascent phase. The elastic net phase minimizes the path through the edge points. The procedure is equivalent to gradient descent of an energy function, and leads to a local minimum of energy that represents a good solution to the problem. Once the elastic net gets stuck in local minima, the gradient ascent phase attempts to fill up the valley by modifying parameters in a gradient ascent direction of the energy function. Thus, these two phases are repeated until the elastic net gets out of local minima and produces the shortest or better contour through edge points. We test the algorithm on a set of artificial images devised with the aim of demonstrating the sort of features that may occur in real images. For all problems, the systems are shown to be capable of escaping from the elastic net local minima and producing more meaningful contours than the original elastic net.

  • An Improved Local Search Learning Method for Multiple-Valued Logic Network Minimization with Bi-objectives

    Shangce GAO  Qiping CAO  Catherine VAIRAPPAN  Jianchen ZHANG  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E92-A No:2
      Page(s):
    594-603

    This paper describes an improved local search method for synthesizing arbitrary Multiple-Valued Logic (MVL) function. In our approach, the MVL function is mapped from its algebraic presentation (sum-of-products form) on a multiple-layered network based on the functional completeness property. The output of the network is evaluated based on two metrics of correctness and optimality. A local search embedded with chaotic dynamics is utilized to train the network in order to minimize the MVL functions. With the characteristics of pseudo-randomness, ergodicity and irregularity, both the search sequence and solution neighbourhood generated by chaotic variables enables the system to avoid local minimum settling and improves the solution quality. Simulation results based on 2-variable 4-valued MVL functions and some other large instances also show that the improved local search learning algorithm outperforms the traditional methods in terms of the correctness and the average number of product terms required to realize a given MVL function.

  • Local Search with Probabilistic Modeling for Learning Multiple-Valued Logic Networks

    Shangce GAO  Qiping CAO  Masahiro ISHII  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E94-A No:2
      Page(s):
    795-805

    This paper proposes a probabilistic modeling learning algorithm for the local search approach to the Multiple-Valued Logic (MVL) networks. The learning model (PMLS) has two phases: a local search (LS) phase, and a probabilistic modeling (PM) phase. The LS performs searches by updating the parameters of the MVL network. It is equivalent to a gradient decrease of the error measures, and leads to a local minimum of error that represents a good solution to the problem. Once the LS is trapped in local minima, the PM phase attempts to generate a new starting point for LS for further search. It is expected that the further search is guided to a promising area by the probability model. Thus, the proposed algorithm can escape from local minima and further search better results. We test the algorithm on many randomly generated MVL networks. Simulation results show that the proposed algorithm is better than the other improved local search learning methods, such as stochastic dynamic local search (SDLS) and chaotic dynamic local search (CDLS).

  • Stochastic Competitive Hopfield Network and Its Application to Maximum Clique Problem

    Jiahai WANG  Zheng TANG  Qiping CAO  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E87-A No:10
      Page(s):
    2790-2798

    In this paper, introducing a stochastic hill-climbing dynamics into an optimal competitive Hopfield network model (OCHOM), we propose a new algorithm that permits temporary energy increases, which helps the OCHOM escape from local minima. In graph theory, a clique is a completely connected subgraph and the maximum clique problem (MCP) is to find a clique of maximum size of a graph. The MCP is a classic optimization problem in computer science and in graph theory with many real-world applications, and is also known to be NP-complete. Recently, Galan-Marin et al. proposed the OCHOM for the MCP. It can guarantee convergence to a global/local minimum of energy function, and performs better than other competitive neural approaches. However, the OCHOM has no mechanism to escape from local minima. The proposed algorithm introduces stochastic hill-climbing dynamics which helps the OCHOM escape from local minima, and it is applied to the MCP. A number of instances have been simulated to verify the proposed algorithm.

  • A Stochastic Dynamic Local Search Method for Learning Multiple-Valued Logic Networks

    Qiping CAO  Shangce GAO  Jianchen ZHANG  Zheng TANG  Haruhiko KIMURA  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E90-A No:5
      Page(s):
    1085-1092

    In this paper, we propose a stochastic dynamic local search (SDLS) method for Multiple-Valued Logic (MVL) learning by introducing stochastic dynamics into the traditional local search method. The proposed learning network maintains some trends of quick descent to either global minimum or a local minimum, and at the same time has some chance of escaping from local minima by permitting temporary error increases during learning. Thus the network may eventually reach the global minimum state or its best approximation with very high probability. Simulation results show that the proposed algorithm has the superior abilities to find the global minimum for the MVL network learning within reasonable number of iterations.