The search functionality is under construction.

Author Search Result

[Author] Jianchen ZHANG(4hit)

1-4hit
  • An Improved Clonal Selection Algorithm and Its Application to Traveling Salesman Problems

    Shangce GAO  Zheng TANG  Hongwei DAI  Jianchen ZHANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E90-A No:12
      Page(s):
    2930-2938

    The clonal selection algorithm (CS), inspired by the basic features of adaptive immune response to antigenic stimulus, can exploit and explore the solution space parallelly and effectively. However, antibody initialization and premature convergence are two problems of CS. To overcome these two problems, we propose a chaotic distance-based clonal selection algorithm (CDCS). In this novel algorithm, we introduce a chaotic initialization mechanism and a distance-based somatic hypermutation to improve the performance of CS. The proposed algorithm is also verified for numerous benchmark traveling salesman problems. Experimental results show that the improved algorithm proposed in this paper provides better performance when compared to other metaheuristics.

  • An Improved Local Search Learning Method for Multiple-Valued Logic Network Minimization with Bi-objectives

    Shangce GAO  Qiping CAO  Catherine VAIRAPPAN  Jianchen ZHANG  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E92-A No:2
      Page(s):
    594-603

    This paper describes an improved local search method for synthesizing arbitrary Multiple-Valued Logic (MVL) function. In our approach, the MVL function is mapped from its algebraic presentation (sum-of-products form) on a multiple-layered network based on the functional completeness property. The output of the network is evaluated based on two metrics of correctness and optimality. A local search embedded with chaotic dynamics is utilized to train the network in order to minimize the MVL functions. With the characteristics of pseudo-randomness, ergodicity and irregularity, both the search sequence and solution neighbourhood generated by chaotic variables enables the system to avoid local minimum settling and improves the solution quality. Simulation results based on 2-variable 4-valued MVL functions and some other large instances also show that the improved local search learning algorithm outperforms the traditional methods in terms of the correctness and the average number of product terms required to realize a given MVL function.

  • An Expanded Lateral Interactive Clonal Selection Algorithm and Its Application

    Shangce GAO  Hongwei DAI  Jianchen ZHANG  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E91-A No:8
      Page(s):
    2223-2231

    Based on the clonal selection principle proposed by Burnet, in the immune response process there is no crossover of genetic material between members of the repertoire, i.e., there is no knowledge communication during different elite pools in the previous clonal selection models. As a result, the search performance of these models is ineffective. To solve this problem, inspired by the concept of the idiotypic network theory, an expanded lateral interactive clonal selection algorithm (LICS) is put forward. In LICS, an antibody is matured not only through the somatic hypermutation and the receptor editing from the B cell, but also through the stimuli from other antibodies. The stimuli is realized by memorizing some common gene segment on the idiotypes, based on which a lateral interactive receptor editing operator is also introduced. Then, LICS is applied to several benchmark instances of the traveling salesman problem. Simulation results show the efficiency and robustness of LICS when compared to other traditional algorithms.

  • A Stochastic Dynamic Local Search Method for Learning Multiple-Valued Logic Networks

    Qiping CAO  Shangce GAO  Jianchen ZHANG  Zheng TANG  Haruhiko KIMURA  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E90-A No:5
      Page(s):
    1085-1092

    In this paper, we propose a stochastic dynamic local search (SDLS) method for Multiple-Valued Logic (MVL) learning by introducing stochastic dynamics into the traditional local search method. The proposed learning network maintains some trends of quick descent to either global minimum or a local minimum, and at the same time has some chance of escaping from local minima by permitting temporary error increases during learning. Thus the network may eventually reach the global minimum state or its best approximation with very high probability. Simulation results show that the proposed algorithm has the superior abilities to find the global minimum for the MVL network learning within reasonable number of iterations.