The search functionality is under construction.

Author Search Result

[Author] Hongwei DAI(6hit)

1-6hit
  • A Novel Clonal Selection Algorithm and Its Application to Traveling Salesman Problem

    Shangce GAO  Hongwei DAI  Gang YANG  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E90-A No:10
      Page(s):
    2318-2325

    The Clonal Selection Algorithm (CSA) is employed by the natural immune system to define the basic features of an immune response to an antigenic stimulus. In the immune response, according to Burnet's clonal selection principle, the antigen imposes a selective pressure on the antibody population by allowing only those cells which specifically recognize the antigen to be selected for proliferation and differentiation. However ongoing investigations indicate that receptor editing, which refers to the process whereby antigen receptor engagement leads to a secondary somatic gene rearrangement event and alteration of the receptor specificity, is occasionally found in affinity maturation process. In this paper, we extend the traditional CSA approach by incorporating the receptor editing method, named RECSA, and applying it to the Traveling Salesman Problem. Thus, both somatic hypermutation (HM) of clonal selection theory and receptor editing (RE) are utilized to improve antibody affinity. Simulation results and comparisons with other general algorithms show that the RECSA algorithm can effectively enhance the searching efficiency and greatly improve the searching quality within reasonable number of generations.

  • Affinity Based Lateral Interaction Artificial Immune System

    Hongwei DAI  Zheng TANG  Yu YANG  Hiroki TAMURA  

     
    PAPER-Human-computer Interaction

      Vol:
    E89-D No:4
      Page(s):
    1515-1524

    Immune system protects living body from various attacks by foreign invades. Based on the immune response principles, we propose an improved lateral interaction artificial immune system model in this paper. Considering that the different epitopes on the surface of antigen can be recognized by a set of different paratopes expressed on the surface of immune cells, we build a neighborhood set that consists of immune cells with different affinities to a certain input antigen. We update all the weights of the immune cells located in neighborhood set according to their affinities. Simulations on noisy pattern recognition illustrate that the proposed artificial immune system model has stronger noise tolerance ability and is more effective at recognizing noisy patterns than that of our previous models.

  • Quantum Interference Crossover-Based Clonal Selection Algorithm and Its Application to Traveling Salesman Problem

    Hongwei DAI  Yu YANG  Cunhua LI  Jun SHI  Shangce GAO  Zheng TANG  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E92-D No:1
      Page(s):
    78-85

    Clonal Selection Algorithm (CSA), based on the clonal selection theory proposed by Burnet, has gained much attention and wide applications during the last decade. However, the proliferation process in the case of immune cells is asexual. That is, there is no information exchange during different immune cells. As a result the traditional CSA is often not satisfactory and is easy to be trapped in local optima so as to be premature convergence. To solve such a problem, inspired by the quantum interference mechanics, an improved quantum crossover operator is introduced and embedded in the traditional CSA. Simulation results based on the traveling salesman problems (TSP) have demonstrated the effectiveness of the quantum crossover-based Clonal Selection Algorithm.

  • An Expanded Lateral Interactive Clonal Selection Algorithm and Its Application

    Shangce GAO  Hongwei DAI  Jianchen ZHANG  Zheng TANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E91-A No:8
      Page(s):
    2223-2231

    Based on the clonal selection principle proposed by Burnet, in the immune response process there is no crossover of genetic material between members of the repertoire, i.e., there is no knowledge communication during different elite pools in the previous clonal selection models. As a result, the search performance of these models is ineffective. To solve this problem, inspired by the concept of the idiotypic network theory, an expanded lateral interactive clonal selection algorithm (LICS) is put forward. In LICS, an antibody is matured not only through the somatic hypermutation and the receptor editing from the B cell, but also through the stimuli from other antibodies. The stimuli is realized by memorizing some common gene segment on the idiotypes, based on which a lateral interactive receptor editing operator is also introduced. Then, LICS is applied to several benchmark instances of the traveling salesman problem. Simulation results show the efficiency and robustness of LICS when compared to other traditional algorithms.

  • Improved Clonal Selection Algorithm Combined with Ant Colony Optimization

    Shangce GAO  Wei WANG  Hongwei DAI  Fangjia LI  Zheng TANG  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E91-D No:6
      Page(s):
    1813-1823

    Both the clonal selection algorithm (CSA) and the ant colony optimization (ACO) are inspired by natural phenomena and are effective tools for solving complex problems. CSA can exploit and explore the solution space parallely and effectively. However, it can not use enough environment feedback information and thus has to do a large redundancy repeat during search. On the other hand, ACO is based on the concept of indirect cooperative foraging process via secreting pheromones. Its positive feedback ability is nice but its convergence speed is slow because of the little initial pheromones. In this paper, we propose a pheromone-linker to combine these two algorithms. The proposed hybrid clonal selection and ant colony optimization (CSA-ACO) reasonably utilizes the superiorities of both algorithms and also overcomes their inherent disadvantages. Simulation results based on the traveling salesman problems have demonstrated the merit of the proposed algorithm over some traditional techniques.

  • An Improved Clonal Selection Algorithm and Its Application to Traveling Salesman Problems

    Shangce GAO  Zheng TANG  Hongwei DAI  Jianchen ZHANG  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E90-A No:12
      Page(s):
    2930-2938

    The clonal selection algorithm (CS), inspired by the basic features of adaptive immune response to antigenic stimulus, can exploit and explore the solution space parallelly and effectively. However, antibody initialization and premature convergence are two problems of CS. To overcome these two problems, we propose a chaotic distance-based clonal selection algorithm (CDCS). In this novel algorithm, we introduce a chaotic initialization mechanism and a distance-based somatic hypermutation to improve the performance of CS. The proposed algorithm is also verified for numerous benchmark traveling salesman problems. Experimental results show that the improved algorithm proposed in this paper provides better performance when compared to other metaheuristics.