The search functionality is under construction.

Author Search Result

[Author] Yu YANG(23hit)

1-20hit(23hit)

  • UMPI Test in SIRV Distribution for the Multi-Rank Signal Model

    Guolong CUI  Lingjiang KONG  Xiaobo YANG  Jianyu YANG  

     
    LETTER-Sensing

      Vol:
    E94-B No:1
      Page(s):
    368-371

    This letter mainly deals with the multi-rank signal detecting problem against Spherically Invariant Random Vector (SIRV) background with Invariance theory. It is proved that generalized likelihood ratio test (GLRT), Rao test and Wald test are all the Uniformly Most Powerful Invariant (UMPI) detectors in SIRV distributions under a mild technical condition.

  • High-Power Photodiodes for Analog Applications Open Access

    Andreas BELING  Joe C. CAMPBELL  Kejia LI  Qinglong LI  Ye WANG  Madison E. WOODSON  Xiaojun XIE  Zhanyu YANG  

     
    INVITED PAPER

      Vol:
    E98-C No:8
      Page(s):
    764-768

    This paper summarizes recent progress on modified uni-traveling carrier photodiodes that have achieved RF output power levels of 1.8 Watt and 4.4 Watt in continuous wave and pulsed operation, respectively. Flip-chip bonded discrete photodiodes, narrowband photodiodes, and photodiodes integrated with antennas are described.

  • Boosting Spectrum-Based Fault Localization via Multi-Correct Programs in Online Programming Open Access

    Wei ZHENG  Hao HU  Tengfei CHEN  Fengyu YANG  Xin FAN  Peng XIAO  

     
    PAPER-Software Engineering

      Pubricized:
    2023/12/11
      Vol:
    E107-D No:4
      Page(s):
    525-536

    Providing students with useful feedback on faulty programs can effectively help students fix programs. Spectrum-Based Fault Location (SBFL), which is a widely studied and lightweight technique, can automatically generate a suspicious value of statement ranking to help users find potential faults in a program. However, the performance of SBFL on student programs is not satisfactory, to improve the accuracy of SBFL in student programs, we propose a novel Multi-Correct Programs based Fault Localization (MCPFL) approach. Specifically, We first collected the correct programs submitted by students on the OJ system according to the programming problem numbers and removed the highly similar correct programs based on code similarity, and then stored them together with the faulty program to be located to construct a set of programs. Afterward, we analyzed the suspiciousness of the term in the faulty program through the Term Frequency-Inverse Document Frequency (TF-IDF). Finally, we designed a formula to calculate the weight of suspiciousness for program statements based on the number of input variables in the statement and weighted it to the spectrum-based fault localization formula. To evaluate the effectiveness of MCPFL, we conducted empirical studies on six student program datasets collected in our OJ system, and the results showed that MCPFL can effectively improve the traditional SBFL methods. In particular, on the EXAM metric, our approach improves by an average of 27.51% on the Dstar formula.

  • Multi-Hop Distributed Clustering Algorithm Based on Link Duration Open Access

    Laiwei JIANG  Zheng CHEN  Hongyu YANG  

     
    PAPER-Network

      Vol:
    E107-B No:7
      Page(s):
    495-504

    As a hierarchical network framework, clustering aims to divide nodes with similar mobility characteristics into the same cluster to form a more structured hierarchical network, which can effectively solve the problem of high dynamics of the network topology caused by the high-speed movement of nodes in aeronautical ad hoc networks. Based on this goal, we propose a multi-hop distributed clustering algorithm based on link duration. The algorithm is based on the idea of multi-hop clustering, which ensures the coverage and stability of clustering. In the clustering phase, the link duration is used to accurately measure the degree of stability between nodes. At the same time, we also use the link duration threshold to filter out relatively stable links and use the gravity factor to let nodes set conditions for actively creating links based on neighbor distribution. When selecting the cluster head, we select the most stable node as the cluster head node based on the defined node stability weight. The node stability weight comprehensively considers the connectivity degree of nodes and the link duration between nodes. In order to verify the effectiveness of the proposed method, we compare them with the N-hop and K-means algorithms from four indicators: average cluster head duration, average cluster member duration, number of cluster head changes, and average number of intra-cluster link changes. Experiments show that the proposed method can effectively improve the stability of the topology.

  • Third-Order Doppler Parameter Estimation of Bistatic Forward-Looking SAR Based on Modified Cubic Phase Function

    Wenchao LI  Jianyu YANG  Yulin HUANG  Lingjiang KONG  

     
    PAPER-Sensing

      Vol:
    E95-B No:2
      Page(s):
    581-586

    For Doppler parameter estimation of forward-looking SAR, the third-order Doppler parameter can not be neglected. In this paper, the azimuth signal of the transmitter fixed bistatic forward-looking SAR is modeled as a cubic polynomial phase signal (CPPS) and multiple time-overlapped CPPSs, and the modified cubic phase function is presented to estimate the third-order Doppler parameter. By combining the cubic phase function (CPF) with Radon transform, the method can give an accurate estimation of the third-order Doppler parameter. Simulations validate the effectiveness of the algorithm.

  • Thresholding Process Based Dynamic Programming Track-Before-Detect Algorithm

    Wei YI  Lingjiang KONG  Jianyu YANG  

     
    PAPER-Sensing

      Vol:
    E96-B No:1
      Page(s):
    291-300

    Dynamic Programming (DP) based Track-Before-Detect (TBD) algorithm is effective in detecting low signal-to-noise ratio (SNR) targets. However, its complexity increases exponentially as the dimension of the target state space increases, so the exact implementation of DP-TBD will become computationally prohibitive if the state dimension is more than two or three, which greatly prevents its applications to many realistic problems. In order to improve the computational efficiency of DP-TBD, a thresholding process based DP-TBD (TP-DP-TBD) is proposed in this paper. In TP-DP-TBD, a low threshold is first used to eliminate the noise-like (with low-amplitude) measurements. Then the DP integration process is modified to only focuses on the thresholded higher-amplitude measurements, thus huge amounts of computation devoted to the less meaningful low-amplitude measurements are saved. Additionally, a merit function transfer process is integrated into DP recursion to guarantee the inheritance and utilization of the target merits. The performance of TP-DP-TBD is investigated under both optical style Cartesian model and surveillance radar model. The results show that substantial computation reduction is achieved with limited performance loss, consequently TP-DP-TBD provides a cost-efficient tradeoff between computational cost and performance. The effect of the merit function transfer on performance is also studied.

  • Hybridizing Dragonfly Algorithm with Differential Evolution for Global Optimization Open Access

    MeiJun DUAN  HongYu YANG  Bo YANG  XiPing WU  HaiJun LIANG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2019/07/17
      Vol:
    E102-D No:10
      Page(s):
    1891-1901

    Due to its simplicity and efficiency, differential evolution (DE) has gained the interest of researchers from various fields for solving global optimization problems. However, it is prone to premature convergence at local minima. To overcome this drawback, a novel hybrid dragonfly algorithm with differential evolution (Hybrid DA-DE) for solving global optimization problems is proposed. Firstly, a novel mutation operator is introduced based on the dragonfly algorithm (DA). Secondly, the scaling factor (F) is adjusted in a self-adaptive and individual-dependent way without extra parameters. The proposed algorithm combines the exploitation capability of DE and exploration capability of DA to achieve optimal global solutions. The effectiveness of this algorithm is evaluated using 30 classical benchmark functions with sixteen state-of-the-art meta-heuristic algorithms. A series of experimental results show that Hybrid DA-DE outperforms other algorithms significantly. Meanwhile, Hybrid DA-DE has the best adaptability to high-dimensional problems.

  • Sparsity Preserving Embedding with Manifold Learning and Discriminant Analysis

    Qian LIU  Chao LAN  Xiao Yuan JING  Shi Qiang GAO  David ZHANG  Jing Yu YANG  

     
    LETTER-Pattern Recognition

      Vol:
    E95-D No:1
      Page(s):
    271-274

    In the past few years, discriminant analysis and manifold learning have been widely used in feature extraction. Recently, the sparse representation technique has advanced the development of pattern recognition. In this paper, we combine both discriminant analysis and manifold learning with sparse representation technique and propose a novel feature extraction approach named sparsity preserving embedding with manifold learning and discriminant analysis. It seeks an embedded space, where not only the sparse reconstructive relations among original samples are preserved, but also the manifold and discriminant information of both original sample set and the corresponding reconstructed sample set is maintained. Experimental results on the public AR and FERET face databases show that our approach outperforms relevant methods in recognition performance.

  • A Frequency-Domain Imaging Algorithm for Translational Invariant Bistatic Forward-Looking SAR

    Junjie WU  Jianyu YANG  Yulin HUANG  Haiguang YANG  Lingjiang KONG  

     
    PAPER-Sensing

      Vol:
    E96-B No:2
      Page(s):
    605-612

    With appropriate geometry configurations, bistatic Synthetic Aperture Radar (SAR) can break through the limitations of monostatic SAR for forward-looking imaging. Thanks to such a capability, bistatic forward-looking SAR (BFSAR) has extensive potential applications. This paper develops a frequency-domain imaging algorithm for translational invariant BFSAR. The algorithm uses the method of Lengendre polynomials expansion to compute the two dimensional point target reference spectrum, and this spectrum is used to perform the range cell migration correction (RCMC), secondary range compression and azimuth compression. In particular, the Doppler-centroid and bistatic-range dependent interpolation for residual RCMC is presented in detail. In addition, a method that combines the ambiguity and resolution theories to determine the forward-looking imaging swath is also presented in this paper.

  • Affinity Based Lateral Interaction Artificial Immune System

    Hongwei DAI  Zheng TANG  Yu YANG  Hiroki TAMURA  

     
    PAPER-Human-computer Interaction

      Vol:
    E89-D No:4
      Page(s):
    1515-1524

    Immune system protects living body from various attacks by foreign invades. Based on the immune response principles, we propose an improved lateral interaction artificial immune system model in this paper. Considering that the different epitopes on the surface of antigen can be recognized by a set of different paratopes expressed on the surface of immune cells, we build a neighborhood set that consists of immune cells with different affinities to a certain input antigen. We update all the weights of the immune cells located in neighborhood set according to their affinities. Simulations on noisy pattern recognition illustrate that the proposed artificial immune system model has stronger noise tolerance ability and is more effective at recognizing noisy patterns than that of our previous models.

  • Traffic Flow Simulator Using Virtual Controller Model

    Haijun LIANG  Hongyu YANG  Bo YANG  

     
    LETTER-Intelligent Transport System

      Vol:
    E96-A No:1
      Page(s):
    391-393

    A new paradigm for building Virtual Controller Model (VCM) for traffic flow simulator is developed. It is based on flight plan data and is applied to Traffic Flow Management System (TFMS) in China. The problem of interest is focused on the sectors of airspace and how restrictions to aircraft movement are applied by air traffic controllers and demand overages or capacity shortfalls in sectors of airspace. To estimate and assess the balance between the traffic flow and the capacity of sector in future, we apply Virtual Controller model, which models by the sectors airspace system and its capacity constraints. Numerical results are presented and illustrated by applying them to air traffic data for a typical day in the Traffic Flow Management System. The results show that the predictive capabilities of the model are successfully validated by showing a comparison between real flow data and simulated sector flow, making this method appropriate for traffic flow management system.

  • Altered Fingerprints Detection Based on Deep Feature Fusion

    Chao XU  Yunfeng YAN  Lehangyu YANG  Sheng LI  Guorui FENG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2022/06/13
      Vol:
    E105-D No:9
      Page(s):
    1647-1651

    The altered fingerprints help criminals escape from police and cause great harm to the society. In this letter, an altered fingerprint detection method is proposed. The method is constructed by two deep convolutional neural networks to train the time-domain and frequency-domain features. A spectral attention module is added to connect two networks. After the extraction network, a feature fusion module is then used to exploit relationship of two network features. We make ablation experiments and add the module proposed in some popular architectures. Results show the proposed method can improve the performance of altered fingerprint detection compared with the recent neural networks.

  • Cluster Based Location-Aided Routing Protocol for Large Scale Mobile Ad Hoc Networks

    Yi WANG  Liang DONG  Taotao LIANG  Xinyu YANG  Deyun ZHANG  

     
    PAPER-Networks

      Vol:
    E92-D No:5
      Page(s):
    1103-1124

    Routing algorithms with low overhead, stable link and independence of the total number of nodes in the network are essential for the design and operation of the large-scale wireless mobile ad hoc networks (MANET). In this paper, we develop and analyze the Cluster Based Location-Aided Routing Protocol for MANET (C-LAR), a scalable and effective routing algorithm for MANET. C-LAR runs on top of an adaptive cluster cover of the MANET, which can be created and maintained using, for instance, the weight-based distributed algorithm. This algorithm takes into consideration the node degree, mobility, relative distance, battery power and link stability of mobile nodes. The hierarchical structure stabilizes the end-to-end communication paths and improves the networks' scalability such that the routing overhead does not become tremendous in large scale MANET. The clusterheads form a connected virtual backbone in the network, determine the network's topology and stability, and provide an efficient approach to minimizing the flooding traffic during route discovery and speeding up this process as well. Furthermore, it is fascinating and important to investigate how to control the total number of nodes participating in a routing establishment process so as to improve the network layer performance of MANET. C-LAR is to use geographical location information provided by Global Position System to assist routing. The location information of destination node is used to predict a smaller rectangle, isosceles triangle, or circle request zone, which is selected according to the relative location of the source and the destination, that covers the estimated region in which the destination may be located. Thus, instead of searching the route in the entire network blindly, C-LAR confines the route searching space into a much smaller estimated range. Simulation results have shown that C-LAR outperforms other protocols significantly in route set up time, routing overhead, mean delay and packet collision, and simultaneously maintains low average end-to-end delay, high success delivery ratio, low control overhead, as well as low route discovery frequency.

  • Quantum Interference Crossover-Based Clonal Selection Algorithm and Its Application to Traveling Salesman Problem

    Hongwei DAI  Yu YANG  Cunhua LI  Jun SHI  Shangce GAO  Zheng TANG  

     
    PAPER-Biocybernetics, Neurocomputing

      Vol:
    E92-D No:1
      Page(s):
    78-85

    Clonal Selection Algorithm (CSA), based on the clonal selection theory proposed by Burnet, has gained much attention and wide applications during the last decade. However, the proliferation process in the case of immune cells is asexual. That is, there is no information exchange during different immune cells. As a result the traditional CSA is often not satisfactory and is easy to be trapped in local optima so as to be premature convergence. To solve such a problem, inspired by the quantum interference mechanics, an improved quantum crossover operator is introduced and embedded in the traditional CSA. Simulation results based on the traveling salesman problems (TSP) have demonstrated the effectiveness of the quantum crossover-based Clonal Selection Algorithm.

  • Spatial Variance of Bistatic SAR with One Fixed Station

    Junjie WU  Jianyu YANG  Yulin HUANG  Haiguang YANG  Lingjiang KONG  

     
    PAPER-Sensing

      Vol:
    E95-B No:10
      Page(s):
    3270-3278

    Bistatic synthetic aperture radar (BSAR) with one fixed station (OF-BSAR) can be used in wide area surveillance, ground moving target indication etc. This paper analyzes the spatial variance of OF-BSAR. Analytical expressions of the spatial invariance region in the data space are given. Using these results, we can determine the spatial invariance region in the data set and the imaging area. After that, we give a data blocking scheme for raw data focusing. Numerical simulation verifies the results of this paper.

  • Geometry Clipmaps Terrain Rendering Using Hardware Tessellation

    Ge SONG  Hongyu YANG  Yulong JI  

     
    LETTER-Computer Graphics

      Pubricized:
    2016/11/09
      Vol:
    E100-D No:2
      Page(s):
    401-404

    Due to heavy rendering load and unstable frame rate when rendering large terrain, this paper proposes a geometry clipmaps based algorithm. Triangle meshes are generated by few tessellation control points in GPU tessellation shader. ‘Cracks’ caused by different resolution between adjacent levels are eliminated by modifying outer tessellation level factor of shared edges between levels. Experimental results show the algorithm is able to improve rendering efficiency and frame rate stability in terrain navigation.

  • Unsupervised Prosodic Labeling of Speech Synthesis Databases Using Context-Dependent HMMs

    Chen-Yu YANG  Zhen-Hua LING  Li-Rong DAI  

     
    PAPER-Speech Synthesis and Related Topics

      Vol:
    E97-D No:6
      Page(s):
    1449-1460

    In this paper, an automatic and unsupervised method using context-dependent hidden Markov models (CD-HMMs) is proposed for the prosodic labeling of speech synthesis databases. This method consists of three main steps, i.e., initialization, model training and prosodic labeling. The initial prosodic labels are obtained by unsupervised clustering using the acoustic features designed according to the characteristics of the prosodic descriptor to be labeled. Then, CD-HMMs of the spectral parameters, F0s and phone durations are estimated by a means similar to the HMM-based parametric speech synthesis using the initial prosodic labels. These labels are further updated by Viterbi decoding under the maximum likelihood criterion given the acoustic feature sequences and the trained CD-HMMs. The model training and prosodic labeling procedures are conducted iteratively until convergence. The performance of the proposed method is evaluated on Mandarin speech synthesis databases and two prosodic descriptors are investigated, i.e., the prosodic phrase boundary and the emphasis expression. In our implementation, the prosodic phrase boundary labels are initialized by clustering the durations of the pauses between every two consecutive prosodic words, and the emphasis expression labels are initialized by examining the differences between the original and the synthetic F0 trajectories. Experimental results show that the proposed method is able to label the prosodic phrase boundary positions much more accurately than the text-analysis-based method without requiring any manually labeled training data. The unit selection speech synthesis system constructed using the prosodic phrase boundary labels generated by our proposed method achieves similar performance to that using the manual labels. Furthermore, the unit selection speech synthesis system constructed using the emphasis expression labels generated by our proposed method can convey the emphasis information effectively while maintaining the naturalness of synthetic speech.

  • Face Recognition Based on Nonlinear DCT Discriminant Feature Extraction Using Improved Kernel DCV

    Sheng LI  Yong-fang YAO  Xiao-yuan JING  Heng CHANG  Shi-qiang GAO  David ZHANG  Jing-yu YANG  

     
    LETTER-Pattern Recognition

      Vol:
    E92-D No:12
      Page(s):
    2527-2530

    This letter proposes a nonlinear DCT discriminant feature extraction approach for face recognition. The proposed approach first selects appropriate DCT frequency bands according to their levels of nonlinear discrimination. Then, this approach extracts nonlinear discriminant features from the selected DCT bands by presenting a new kernel discriminant method, i.e. the improved kernel discriminative common vector (KDCV) method. Experiments on the public FERET database show that this new approach is more effective than several related methods.

  • Adaptive Receivers for DS/CDMA Multiuser Communication in Multipath Fading Channels

    Fang-Biau UENG  Li-Der JENG  Jun-Da CHEN  Jia-Yu YANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:2
      Page(s):
    687-697

    In direct-sequence code division multiple access (DS/CDMA) multiuser communication systems with multipath channels, both intersymbol interference (ISI) and multiple-access interference (MAI) must be considered. The multipath effect usually changes the characteristics of the spreading codes. Modification of the conventional receiver structure is needed to account for the interference of the multipath fading. This paper proposes four adaptive receivers for such multiuser DS/CDMA systems in multipath fading channels. We employ least mean square (LMS) and recursive least squares (RLS) algorithms for both finite impulse response (FIR) and infinite impulse response (IIR) receiver structures. Mean square error (MSE) and convergence analysis are also given in this paper. Simulation results show the performance comparisons of the four proposed receivers.

  • Closed Summation Expressions for PD and PFA of Adaptive Sidelobe Blanker Detection Algorithm

    Guolong CUI  Lingjiang KONG  Xiaobo YANG  Jianyu YANG  

     
    LETTER-Sensing

      Vol:
    E95-B No:2
      Page(s):
    676-679

    This letter focuses on the performance analysis on the Adaptive Sidelobe Blanker (ASB) detection algorithm in homogeneous environments, and provides closed summation expressions for Probability of Detection (PD) and Probability of False Alarm (PFA) rate in terms of hypergeometric function. The derived results are more powerful and effective than previous integral ones. Moreover, the framework can be modified to solve the the performance analysis problem involving in F or/and beta distributions. Several numerical evaluations of the convergence rate and computation time are provided and discussed.

1-20hit(23hit)