The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Qian LIU(2hit)

1-2hit
  • Sparsity Preserving Embedding with Manifold Learning and Discriminant Analysis

    Qian LIU  Chao LAN  Xiao Yuan JING  Shi Qiang GAO  David ZHANG  Jing Yu YANG  

     
    LETTER-Pattern Recognition

      Vol:
    E95-D No:1
      Page(s):
    271-274

    In the past few years, discriminant analysis and manifold learning have been widely used in feature extraction. Recently, the sparse representation technique has advanced the development of pattern recognition. In this paper, we combine both discriminant analysis and manifold learning with sparse representation technique and propose a novel feature extraction approach named sparsity preserving embedding with manifold learning and discriminant analysis. It seeks an embedded space, where not only the sparse reconstructive relations among original samples are preserved, but also the manifold and discriminant information of both original sample set and the corresponding reconstructed sample set is maintained. Experimental results on the public AR and FERET face databases show that our approach outperforms relevant methods in recognition performance.

  • Facial Image Recognition Based on a Statistical Uncorrelated Near Class Discriminant Approach

    Sheng LI  Xiao-Yuan JING  Lu-Sha BIAN  Shi-Qiang GAO  Qian LIU  Yong-Fang YAO  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E93-D No:4
      Page(s):
    934-937

    In this letter, a statistical uncorrelated near class discriminant (SUNCD) approach is proposed for face recognition. The optimal discriminant vector obtained by this approach can differentiate one class and its near classes, i.e., its nearest neighbor classes, by constructing the specific between-class and within-class scatter matrices and using the Fisher criterion. In this manner, SUNCD acquires all discriminant vectors class by class. Furthermore, SUNCD makes every discriminant vector satisfy locally statistical uncorrelated constraints by using the corresponding class and part of its most neighboring classes. Experiments on the public AR face database demonstrate that the proposed approach outperforms several representative discriminant methods.