1-2hit |
Sheng LI Xiao-Yuan JING Lu-Sha BIAN Shi-Qiang GAO Qian LIU Yong-Fang YAO
In this letter, a statistical uncorrelated near class discriminant (SUNCD) approach is proposed for face recognition. The optimal discriminant vector obtained by this approach can differentiate one class and its near classes, i.e., its nearest neighbor classes, by constructing the specific between-class and within-class scatter matrices and using the Fisher criterion. In this manner, SUNCD acquires all discriminant vectors class by class. Furthermore, SUNCD makes every discriminant vector satisfy locally statistical uncorrelated constraints by using the corresponding class and part of its most neighboring classes. Experiments on the public AR face database demonstrate that the proposed approach outperforms several representative discriminant methods.
Sheng LI Yong-fang YAO Xiao-yuan JING Heng CHANG Shi-qiang GAO David ZHANG Jing-yu YANG
This letter proposes a nonlinear DCT discriminant feature extraction approach for face recognition. The proposed approach first selects appropriate DCT frequency bands according to their levels of nonlinear discrimination. Then, this approach extracts nonlinear discriminant features from the selected DCT bands by presenting a new kernel discriminant method, i.e. the improved kernel discriminative common vector (KDCV) method. Experiments on the public FERET database show that this new approach is more effective than several related methods.