The search functionality is under construction.

Author Search Result

[Author] Xiao-Yuan JING(8hit)

1-8hit
  • Selective Pseudo-Labeling Based Subspace Learning for Cross-Project Defect Prediction

    Ying SUN  Xiao-Yuan JING  Fei WU  Yanfei SUN  

     
    LETTER-Software Engineering

      Pubricized:
    2020/06/10
      Vol:
    E103-D No:9
      Page(s):
    2003-2006

    Cross-project defect prediction (CPDP) is a research hot recently, which utilizes the data form existing source project to construct prediction model and predicts the defect-prone of software instances from target project. However, it is challenging in bridging the distribution difference between different projects. To minimize the data distribution differences between different projects and predict unlabeled target instances, we present a novel approach called selective pseudo-labeling based subspace learning (SPSL). SPSL learns a common subspace by using both labeled source instances and pseudo-labeled target instances. The accuracy of pseudo-labeling is promoted by iterative selective pseudo-labeling strategy. The pseudo-labeled instances from target project are iteratively updated by selecting the instances with high confidence from two pseudo-labeling technologies. Experiments are conducted on AEEEM dataset and the results show that SPSL is effective for CPDP.

  • Joint Domain Adaption and Pseudo-Labeling for Cross-Project Defect Prediction

    Fei WU  Xinhao ZHENG  Ying SUN  Yang GAO  Xiao-Yuan JING  

     
    LETTER-Software Engineering

      Pubricized:
    2021/11/04
      Vol:
    E105-D No:2
      Page(s):
    432-435

    Cross-project defect prediction (CPDP) is a hot research topic in recent years. The inconsistent data distribution between source and target projects and lack of labels for most of target instances bring a challenge for defect prediction. Researchers have developed several CPDP methods. However, the prediction performance still needs to be improved. In this paper, we propose a novel approach called Joint Domain Adaption and Pseudo-Labeling (JDAPL). The network architecture consists of a feature mapping sub-network to map source and target instances into a common subspace, followed by a classification sub-network and an auxiliary classification sub-network. The classification sub-network makes use of the label information of labeled instances to generate pseudo-labels. The auxiliary classification sub-network learns to reduce the distribution difference and improve the accuracy of pseudo-labels for unlabeled instances through loss maximization. Network training is guided by the adversarial scheme. Extensive experiments are conducted on 10 projects of the AEEEM and NASA datasets, and the results indicate that our approach achieves better performance compared with the baselines.

  • Cross-Project Defect Prediction via Semi-Supervised Discriminative Feature Learning

    Danlei XING  Fei WU  Ying SUN  Xiao-Yuan JING  

     
    LETTER-Software Engineering

      Pubricized:
    2020/07/07
      Vol:
    E103-D No:10
      Page(s):
    2237-2240

    Cross-project defect prediction (CPDP) is a feasible solution to build an accurate prediction model without enough historical data. Although existing methods for CPDP that use only labeled data to build the prediction model achieve great results, there are much room left to further improve on prediction performance. In this paper we propose a Semi-Supervised Discriminative Feature Learning (SSDFL) approach for CPDP. SSDFL first transfers knowledge of source and target data into the common space by using a fully-connected neural network to mine potential similarities of source and target data. Next, we reduce the differences of both marginal distributions and conditional distributions between mapped source and target data. We also introduce the discriminative feature learning to make full use of label information, which is that the instances from the same class are close to each other and the instances from different classes are distant from each other. Extensive experiments are conducted on 10 projects from AEEEM and NASA datasets, and the experimental results indicate that our approach obtains better prediction performance than baselines.

  • Facial Image Recognition Based on a Statistical Uncorrelated Near Class Discriminant Approach

    Sheng LI  Xiao-Yuan JING  Lu-Sha BIAN  Shi-Qiang GAO  Qian LIU  Yong-Fang YAO  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E93-D No:4
      Page(s):
    934-937

    In this letter, a statistical uncorrelated near class discriminant (SUNCD) approach is proposed for face recognition. The optimal discriminant vector obtained by this approach can differentiate one class and its near classes, i.e., its nearest neighbor classes, by constructing the specific between-class and within-class scatter matrices and using the Fisher criterion. In this manner, SUNCD acquires all discriminant vectors class by class. Furthermore, SUNCD makes every discriminant vector satisfy locally statistical uncorrelated constraints by using the corresponding class and part of its most neighboring classes. Experiments on the public AR face database demonstrate that the proposed approach outperforms several representative discriminant methods.

  • Multi-View Synthesis and Analysis Dictionaries Learning for Classification

    Fei WU  Xiwei DONG  Lu HAN  Xiao-Yuan JING  Yi-mu JI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2018/11/27
      Vol:
    E102-D No:3
      Page(s):
    659-662

    Recently, multi-view dictionary learning technique has attracted lots of research interest. Although several multi-view dictionary learning methods have been addressed, they can be further improved. Most of existing multi-view dictionary learning methods adopt the l0 or l1-norm sparsity constraint on the representation coefficients, which makes the training and testing phases time-consuming. In this paper, we propose a novel multi-view dictionary learning approach named multi-view synthesis and analysis dictionaries learning (MSADL), which jointly learns multiple discriminant dictionary pairs with each corresponding to one view and containing a structured synthesis dictionary and a structured analysis dictionary. MSADL utilizes synthesis dictionaries to achieve class-specific reconstruction and uses analysis dictionaries to generate discriminative code coefficients by linear projection. Furthermore, we design an uncorrelation term for multi-view dictionary learning, such that the redundancy among synthesis dictionaries learned from different views can be reduced. Two widely used datasets are employed as test data. Experimental results demonstrate the efficiency and effectiveness of the proposed approach.

  • Face Recognition Based on Nonlinear DCT Discriminant Feature Extraction Using Improved Kernel DCV

    Sheng LI  Yong-fang YAO  Xiao-yuan JING  Heng CHANG  Shi-qiang GAO  David ZHANG  Jing-yu YANG  

     
    LETTER-Pattern Recognition

      Vol:
    E92-D No:12
      Page(s):
    2527-2530

    This letter proposes a nonlinear DCT discriminant feature extraction approach for face recognition. The proposed approach first selects appropriate DCT frequency bands according to their levels of nonlinear discrimination. Then, this approach extracts nonlinear discriminant features from the selected DCT bands by presenting a new kernel discriminant method, i.e. the improved kernel discriminative common vector (KDCV) method. Experiments on the public FERET database show that this new approach is more effective than several related methods.

  • Modality-Fused Graph Network for Cross-Modal Retrieval

    Fei WU  Shuaishuai LI  Guangchuan PENG  Yongheng MA  Xiao-Yuan JING  

     
    LETTER-Pattern Recognition

      Pubricized:
    2023/02/09
      Vol:
    E106-D No:5
      Page(s):
    1094-1097

    Cross-modal hashing technology has attracted much attention for its favorable retrieval performance and low storage cost. However, for existing cross-modal hashing methods, the heterogeneity of data across modalities is still a challenge and how to fully explore and utilize the intra-modality features has not been well studied. In this paper, we propose a novel cross-modal hashing approach called Modality-fused Graph Network (MFGN). The network architecture consists of a text channel and an image channel that are used to learn modality-specific features, and a modality fusion channel that uses the graph network to learn the modality-shared representations to reduce the heterogeneity across modalities. In addition, an integration module is introduced for the image and text channels to fully explore intra-modality features. Experiments on two widely used datasets show that our approach achieves better results than the state-of-the-art cross-modal hashing methods.

  • Deep Metric Learning with Triplet-Margin-Center Loss for Sketch Face Recognition

    Yujian FENG  Fei WU  Yimu JI  Xiao-Yuan JING  Jian YU  

     
    LETTER-Pattern Recognition

      Pubricized:
    2020/08/18
      Vol:
    E103-D No:11
      Page(s):
    2394-2397

    Sketch face recognition is to match sketch face images to photo face images. The main challenge of sketch face recognition is learning discriminative feature representations to ensure intra-class compactness and inter-class separability. However, traditional sketch face recognition methods encouraged samples with the same identity to get closer, and samples with different identities to be further, and these methods did not consider the intra-class compactness of samples. In this paper, we propose triplet-margin-center loss to cope with the above problem by combining the triplet loss and center loss. The triplet-margin-center loss can enlarge the distance of inter-class samples and reduce intra-class sample variations simultaneously, and improve intra-class compactness. Moreover, the triplet-margin-center loss applies a hard triplet sample selection strategy. It aims to effectively select hard samples to avoid unstable training phase and slow converges. With our approach, the samples from photos and from sketches taken from the same identity are closer, and samples from photos and sketches come from different identities are further in the projected space. In extensive experiments and comparisons with the state-of-the-art methods, our approach achieves marked improvements in most cases.