The search functionality is under construction.

Author Search Result

[Author] Fei WU(16hit)

1-16hit
  • Modality-Fused Graph Network for Cross-Modal Retrieval

    Fei WU  Shuaishuai LI  Guangchuan PENG  Yongheng MA  Xiao-Yuan JING  

     
    LETTER-Pattern Recognition

      Pubricized:
    2023/02/09
      Vol:
    E106-D No:5
      Page(s):
    1094-1097

    Cross-modal hashing technology has attracted much attention for its favorable retrieval performance and low storage cost. However, for existing cross-modal hashing methods, the heterogeneity of data across modalities is still a challenge and how to fully explore and utilize the intra-modality features has not been well studied. In this paper, we propose a novel cross-modal hashing approach called Modality-fused Graph Network (MFGN). The network architecture consists of a text channel and an image channel that are used to learn modality-specific features, and a modality fusion channel that uses the graph network to learn the modality-shared representations to reduce the heterogeneity across modalities. In addition, an integration module is introduced for the image and text channels to fully explore intra-modality features. Experiments on two widely used datasets show that our approach achieves better results than the state-of-the-art cross-modal hashing methods.

  • A Lightweight and Efficient Infrared Pedestrian Semantic Segmentation Method

    Shangdong LIU  Chaojun MEI  Shuai YOU  Xiaoliang YAO  Fei WU  Yimu JI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/06/13
      Vol:
    E106-D No:9
      Page(s):
    1564-1571

    The thermal imaging pedestrian segmentation system has excellent performance in different illumination conditions, but it has some drawbacks(e.g., weak pedestrian texture information, blurred object boundaries). Meanwhile, high-performance large models have higher latency on edge devices with limited computing performance. To solve the above problems, in this paper, we propose a real-time thermal infrared pedestrian segmentation method. The feature extraction layers of our method consist of two paths. Firstly, we utilize the lossless spatial downsampling to obtain boundary texture details on the spatial path. On the context path, we use atrous convolutions to improve the receptive field and obtain more contextual semantic information. Then, the parameter-free attention mechanism is introduced at the end of the two paths for effective feature selection, respectively. The Feature Fusion Module (FFM) is added to fuse the semantic information of the two paths after selection. Finally, we accelerate method inference through multi-threading techniques on the edge computing device. Besides, we create a high-quality infrared pedestrian segmentation dataset to facilitate research. The comparative experiments on the self-built dataset and two public datasets with other methods show that our method also has certain effectiveness. Our code is available at https://github.com/mcjcs001/LEIPNet.

  • Cost-Sensitive and Sparse Ladder Network for Software Defect Prediction

    Jing SUN  Yi-mu JI  Shangdong LIU  Fei WU  

     
    LETTER-Software Engineering

      Pubricized:
    2020/01/29
      Vol:
    E103-D No:5
      Page(s):
    1177-1180

    Software defect prediction (SDP) plays a vital role in allocating testing resources reasonably and ensuring software quality. When there are not enough labeled historical modules, considerable semi-supervised SDP methods have been proposed, and these methods utilize limited labeled modules and abundant unlabeled modules simultaneously. Nevertheless, most of them make use of traditional features rather than the powerful deep feature representations. Besides, the cost of the misclassification of the defective modules is higher than that of defect-free ones, and the number of the defective modules for training is small. Taking the above issues into account, we propose a cost-sensitive and sparse ladder network (CSLN) for SDP. We firstly introduce the semi-supervised ladder network to extract the deep feature representations. Besides, we introduce the cost-sensitive learning to set different misclassification costs for defective-prone and defect-free-prone instances to alleviate the class imbalance problem. A sparse constraint is added on the hidden nodes in ladder network when the number of hidden nodes is large, which enables the model to find robust structures of the data. Extensive experiments on the AEEEM dataset show that the CSLN outperforms several state-of-the-art semi-supervised SDP methods.

  • Deep Metric Learning with Triplet-Margin-Center Loss for Sketch Face Recognition

    Yujian FENG  Fei WU  Yimu JI  Xiao-Yuan JING  Jian YU  

     
    LETTER-Pattern Recognition

      Pubricized:
    2020/08/18
      Vol:
    E103-D No:11
      Page(s):
    2394-2397

    Sketch face recognition is to match sketch face images to photo face images. The main challenge of sketch face recognition is learning discriminative feature representations to ensure intra-class compactness and inter-class separability. However, traditional sketch face recognition methods encouraged samples with the same identity to get closer, and samples with different identities to be further, and these methods did not consider the intra-class compactness of samples. In this paper, we propose triplet-margin-center loss to cope with the above problem by combining the triplet loss and center loss. The triplet-margin-center loss can enlarge the distance of inter-class samples and reduce intra-class sample variations simultaneously, and improve intra-class compactness. Moreover, the triplet-margin-center loss applies a hard triplet sample selection strategy. It aims to effectively select hard samples to avoid unstable training phase and slow converges. With our approach, the samples from photos and from sketches taken from the same identity are closer, and samples from photos and sketches come from different identities are further in the projected space. In extensive experiments and comparisons with the state-of-the-art methods, our approach achieves marked improvements in most cases.

  • Construction of Near-Complementary Sequences with Low PMEPR for Peak Power Control in OFDM

    Gaofei WU  Yuqing ZHANG  Zilong WANG  

     
    PAPER-Sequences

      Vol:
    E95-A No:11
      Page(s):
    1881-1887

    Multicarrier communications including orthogonal frequency-division multiplexing (OFDM) is a technique which has been adopted for various wireless applications. However, a major drawback to the widespread acceptance of OFDM is the high peak-to-mean envelope power ratio (PMEPR) of uncoded OFDM signals. Finding methods for construction of sequences with low PMEPR is an active research area. In this paper, by employing some new shortened and extended Golay complementary pairs as the seeds, we enlarge the family size of near-complementary sequences given by Yu and Gong. We also show that the new set of sequences we obtained is just a reversal of the original set. Numerical results show that the enlarged family size is almost twice of the original one. Besides, the Hamming distances of the binary near-complementary sequences are also analyzed.

  • Noise Spectrum Estimation with Entropy-Based VAD in Non-stationary Environments

    Bing-Fei WU  Kun-Ching WANG  

     
    PAPER-Digital Signal Processing

      Vol:
    E89-A No:2
      Page(s):
    479-485

    This study presents a fast adaptive algorithm for noise estimation in non-stationary environments. To make noise estimation adapt quickly to non-stationary noise environments, a robust entropy-based voice activity detection (VAD) is thus required. It is well-known that the entropy-based measure defined in spectral domain is very insensitive to the changing level of nose. To exploit the specific nature of straight lines existing on speech-only spectrogram, the proposed spectrum entropy measurement improved from spectrum entropy proposed by Shen et al. is further presented and is named band-splitting spectrum entropy (BSE). Consequently, the proposed recursive noise estimator including BSE-based VAD can update noise power spectrum accurately even if the noise-level quickly changes.

  • The Absolute Stability Analysis in Fuzzy Control Systems with Parametric Uncertainties and Reference Inputs

    Bing-Fei WU  Li-Shan MA  Jau-Woei PERNG  

     
    PAPER-Systems and Control

      Vol:
    E92-A No:8
      Page(s):
    2017-2035

    This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.

  • Selective Pseudo-Labeling Based Subspace Learning for Cross-Project Defect Prediction

    Ying SUN  Xiao-Yuan JING  Fei WU  Yanfei SUN  

     
    LETTER-Software Engineering

      Pubricized:
    2020/06/10
      Vol:
    E103-D No:9
      Page(s):
    2003-2006

    Cross-project defect prediction (CPDP) is a research hot recently, which utilizes the data form existing source project to construct prediction model and predicts the defect-prone of software instances from target project. However, it is challenging in bridging the distribution difference between different projects. To minimize the data distribution differences between different projects and predict unlabeled target instances, we present a novel approach called selective pseudo-labeling based subspace learning (SPSL). SPSL learns a common subspace by using both labeled source instances and pseudo-labeled target instances. The accuracy of pseudo-labeling is promoted by iterative selective pseudo-labeling strategy. The pseudo-labeled instances from target project are iteratively updated by selecting the instances with high confidence from two pseudo-labeling technologies. Experiments are conducted on AEEEM dataset and the results show that SPSL is effective for CPDP.

  • Determining Image Base of Firmware Files for ARM Devices

    Ruijin ZHU  Yu-an TAN  Quanxin ZHANG  Fei WU  Jun ZHENG  Yuan XUE  

     
    PAPER-Software System

      Pubricized:
    2015/11/06
      Vol:
    E99-D No:2
      Page(s):
    351-359

    Disassembly, as a principal reverse-engineering tool, is the process of recovering the equivalent assembly instructions of a program's machine code from its binary representation. However, when disassembling a firmware file, the disassembly process cannot be performed well if the image base is unknown. In this paper, we propose an innovative method to determine the image base of a firmware file with ARM/Thumb instruction set. First, based on the characteristics of the function entry table (FET) for an ARM processor, an algorithm called FIND-FET is proposed to identify the function entry tables. Second, by using the most common instructions of function prologue and FETs, the FIND-BASE algorithm is proposed to determine the candidate image base by counting the matched functions and then choose the one with maximal matched FETs as the final result. The algorithms are applied on some firmwares collected from the Internet, and results indicate that they can effectively find out the image base for the majority of example firmware files.

  • Range and Size Estimation Based on a Coordinate Transformation Model for Driving Assistance Systems

    Bing-Fei WU  Chuan-Tsai LIN  Yen-Lin CHEN  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E92-D No:9
      Page(s):
    1725-1735

    This paper presents new approaches for the estimation of range between the preceding vehicle and the experimental vehicle, estimation of vehicle size and its projective size, and dynamic camera calibration. First, our proposed approaches adopt a camera model to transform coordinates from the ground plane onto the image plane to estimate the relative position between the detected vehicle and the camera. Then, to estimate the actual and projective size of the preceding vehicle, we propose a new estimation method. This method can estimate the range from a preceding vehicle to the camera based on contact points between its tires and the ground and then estimate the actual size of the vehicle according to the positions of its vertexes in the image. Because the projective size of a vehicle varies with respect to its distance to the camera, we also present a simple and rapid method of estimating a vehicle's projective height, which allows a reduction in computational time for size estimation in real-time systems. Errors caused by the application of different camera parameters are also estimated and analyzed in this study. The estimation results are used to determine suitable parameters during camera installation to suppress estimation errors. Finally, to guarantee robustness of the detection system, a new efficient approach to dynamic calibration is presented to obtain accurate camera parameters, even when they are changed by camera vibration owing to on-road driving. Experimental results demonstrate that our approaches can provide accurate and robust estimation results of range and size of target vehicles.

  • Joint Domain Adaption and Pseudo-Labeling for Cross-Project Defect Prediction

    Fei WU  Xinhao ZHENG  Ying SUN  Yang GAO  Xiao-Yuan JING  

     
    LETTER-Software Engineering

      Pubricized:
    2021/11/04
      Vol:
    E105-D No:2
      Page(s):
    432-435

    Cross-project defect prediction (CPDP) is a hot research topic in recent years. The inconsistent data distribution between source and target projects and lack of labels for most of target instances bring a challenge for defect prediction. Researchers have developed several CPDP methods. However, the prediction performance still needs to be improved. In this paper, we propose a novel approach called Joint Domain Adaption and Pseudo-Labeling (JDAPL). The network architecture consists of a feature mapping sub-network to map source and target instances into a common subspace, followed by a classification sub-network and an auxiliary classification sub-network. The classification sub-network makes use of the label information of labeled instances to generate pseudo-labels. The auxiliary classification sub-network learns to reduce the distribution difference and improve the accuracy of pseudo-labels for unlabeled instances through loss maximization. Network training is guided by the adversarial scheme. Extensive experiments are conducted on 10 projects of the AEEEM and NASA datasets, and the results indicate that our approach achieves better performance compared with the baselines.

  • Cross-Project Defect Prediction via Semi-Supervised Discriminative Feature Learning

    Danlei XING  Fei WU  Ying SUN  Xiao-Yuan JING  

     
    LETTER-Software Engineering

      Pubricized:
    2020/07/07
      Vol:
    E103-D No:10
      Page(s):
    2237-2240

    Cross-project defect prediction (CPDP) is a feasible solution to build an accurate prediction model without enough historical data. Although existing methods for CPDP that use only labeled data to build the prediction model achieve great results, there are much room left to further improve on prediction performance. In this paper we propose a Semi-Supervised Discriminative Feature Learning (SSDFL) approach for CPDP. SSDFL first transfers knowledge of source and target data into the common space by using a fully-connected neural network to mine potential similarities of source and target data. Next, we reduce the differences of both marginal distributions and conditional distributions between mapped source and target data. We also introduce the discriminative feature learning to make full use of label information, which is that the instances from the same class are close to each other and the instances from different classes are distant from each other. Extensive experiments are conducted on 10 projects from AEEEM and NASA datasets, and the experimental results indicate that our approach obtains better prediction performance than baselines.

  • MPEG-2/4 Low-Complexity Advanced Audio Coding Optimization and Implementation on DSP

    Bing-Fei WU  Hao-Yu HUANG  Yen-Lin CHEN  Hsin-Yuan PENG  Jia-Hsiung HUANG  

     
    PAPER-Speech and Hearing

      Vol:
    E93-D No:5
      Page(s):
    1225-1237

    This study presents several optimization approaches for the MPEG-2/4 Audio Advanced Coding (AAC) Low Complexity (LC) encoding and decoding processes. Considering the power consumption and the peripherals required for consumer electronics, this study adopts the TI OMAP5912 platform for portable devices. An important optimization issue for implementing AAC codec on embedded and mobile devices is to reduce computational complexity and memory consumption. Due to power saving issues, most embedded and mobile systems can only provide very limited computational power and memory resources for the coding process. As a result, modifying and simplifying only one or two blocks is insufficient for optimizing the AAC encoder and enabling it to work well on embedded systems. It is therefore necessary to enhance the computational efficiency of other important modules in the encoding algorithm. This study focuses on optimizing the Temporal Noise Shaping (TNS), Mid/Side (M/S) Stereo, Modified Discrete Cosine Transform (MDCT) and Inverse Quantization (IQ) modules in the encoder and decoder. Furthermore, we also propose an efficient memory reduction approach that provides a satisfactory balance between the reduction of memory usage and the expansion of the encoded files. In the proposed design, both the AAC encoder and decoder are built with fixed-point arithmetic operations and implemented on a DSP processor combined with an ARM-core for peripheral controlling. Experimental results demonstrate that the proposed AAC codec is computationally effective, has low memory consumption, and is suitable for low-cost embedded and mobile applications.

  • Multi-View Synthesis and Analysis Dictionaries Learning for Classification

    Fei WU  Xiwei DONG  Lu HAN  Xiao-Yuan JING  Yi-mu JI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2018/11/27
      Vol:
    E102-D No:3
      Page(s):
    659-662

    Recently, multi-view dictionary learning technique has attracted lots of research interest. Although several multi-view dictionary learning methods have been addressed, they can be further improved. Most of existing multi-view dictionary learning methods adopt the l0 or l1-norm sparsity constraint on the representation coefficients, which makes the training and testing phases time-consuming. In this paper, we propose a novel multi-view dictionary learning approach named multi-view synthesis and analysis dictionaries learning (MSADL), which jointly learns multiple discriminant dictionary pairs with each corresponding to one view and containing a structured synthesis dictionary and a structured analysis dictionary. MSADL utilizes synthesis dictionaries to achieve class-specific reconstruction and uses analysis dictionaries to generate discriminative code coefficients by linear projection. Furthermore, we design an uncorrelation term for multi-view dictionary learning, such that the redundancy among synthesis dictionaries learned from different views can be reduced. Two widely used datasets are employed as test data. Experimental results demonstrate the efficiency and effectiveness of the proposed approach.

  • A Discriminant Analysis Based Recursive Automatic Thresholding Approach for Image Segmentation

    Bing-Fei WU  Yen-Lin CHEN  Chung-Cheng CHIU  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E88-D No:7
      Page(s):
    1716-1723

    In this study, we have proposed an efficient automatic multilevel thresholding method for image segmentation. An effective criterion for measuring the separability of the homogenous objects in the image, based on discriminant analysis, has been introduced to automatically determine the number of thresholding levels to be performed. Then, by applying this discriminant criterion, the object regions with homogeneous illuminations in the image can be recursively and automatically thresholded into separate segmented images. The proposed method is fast and effective in analyzing and thresholding the histogram of the image. In order to conduct an equitable comparative performance evaluation of the proposed method with other thresholding methods, a combinatorial scheme is also introduced to properly reduce the computational complexity of performing multilevel thresholding. The experimental results demonstrated that the proposed method is feasible and computationally efficient in automatic multilevel thresholding for image segmentation.

  • Observer-Based Synchronization for a Class of Unknown Chaos Systems with Adaptive Fuzzy-Neural Network

    Bing-Fei WU  Li-Shan MA  Jau-Woei PERNG  

     
    PAPER-Language, Thought, Knowledge and Intelligence

      Vol:
    E91-A No:7
      Page(s):
    1797-1805

    This investigation applies the adaptive fuzzy-neural observer (AFNO) to synchronize a class of unknown chaotic systems via scalar transmitting signal only. The proposed method can be used in synchronization if nonlinear chaotic systems can be transformed into the canonical form of Lur'e system type by the differential geometric method. In this approach, the adaptive fuzzy-neural network (FNN) in AFNO is adopted on line to model the nonlinear term in the transmitter. Additionally, the master's unknown states can be reconstructed from one transmitted state using observer design in the slave end. Synchronization is achieved when all states are observed. The utilized scheme can adaptively estimate the transmitter states on line, even if the transmitter is changed into another chaos system. On the other hand, the robustness of AFNO can be guaranteed with respect to the modeling error, and external bounded disturbance. Simulation results confirm that the AFNO design is valid for the application of chaos synchronization.