1-4hit |
Hainan ZHANG Yanjing SUN Song LI Wenjuan SHI Chenglong FENG
The correlation filter-based trackers with an appearance model established by single feature have poor robustness to challenging video environment which includes factors such as occlusion, fast motion and out-of-view. In this paper, a long-term tracking algorithm based on multi-feature adaptive fusion for video target is presented. We design a robust appearance model by fusing powerful features including histogram of gradient, local binary pattern and color-naming at response map level to conquer the interference in the video. In addition, a random fern classifier is trained as re-detector to detect target when tracking failure occurs, so that long-term tracking is implemented. We evaluate our algorithm on large-scale benchmark datasets and the results show that the proposed algorithm have more accurate and more robust performance in complex video environment.
Chongjing SUN Hui GAO Junlin ZHOU Yan FU Li SHE
With the distributed data mining technique having been widely used in a variety of fields, the privacy preserving issue of sensitive data has attracted more and more attention in recent years. Our major concern over privacy preserving in distributed data mining is the accuracy of the data mining results while privacy preserving is ensured. Corresponding to the horizontally partitioned data, this paper presents a new hybrid algorithm for privacy preserving distributed data mining. The main idea of the algorithm is to combine the method of random orthogonal matrix transformation with the proposed secure multi-party protocol of matrix product to achieve zero loss of accuracy in most data mining implementations.
Jing SUN Yi-mu JI Shangdong LIU Fei WU
Software defect prediction (SDP) plays a vital role in allocating testing resources reasonably and ensuring software quality. When there are not enough labeled historical modules, considerable semi-supervised SDP methods have been proposed, and these methods utilize limited labeled modules and abundant unlabeled modules simultaneously. Nevertheless, most of them make use of traditional features rather than the powerful deep feature representations. Besides, the cost of the misclassification of the defective modules is higher than that of defect-free ones, and the number of the defective modules for training is small. Taking the above issues into account, we propose a cost-sensitive and sparse ladder network (CSLN) for SDP. We firstly introduce the semi-supervised ladder network to extract the deep feature representations. Besides, we introduce the cost-sensitive learning to set different misclassification costs for defective-prone and defect-free-prone instances to alleviate the class imbalance problem. A sparse constraint is added on the hidden nodes in ladder network when the number of hidden nodes is large, which enables the model to find robust structures of the data. Extensive experiments on the AEEEM dataset show that the CSLN outperforms several state-of-the-art semi-supervised SDP methods.
Xiaozhou CHENG Rui LI Yanjing SUN Yu ZHOU Kaiwen DONG
Visible-Infrared Person Re-identification (VI-ReID) is a challenging pedestrian retrieval task due to the huge modality discrepancy and appearance discrepancy. To address this tough task, this letter proposes a novel gray augmentation exploration (GAE) method to increase the diversity of training data and seek the best ratio of gray augmentation for learning a more focused model. Additionally, we also propose a strong all-modality center-triplet (AMCT) loss to push the features extracted from the same pedestrian more compact but those from different persons more separate. Experiments conducted on the public dataset SYSU-MM01 demonstrate the superiority of the proposed method in the VI-ReID task.