The search functionality is under construction.

Author Search Result

[Author] Song LI(14hit)

1-14hit
  • Blind Quality Index for Super Resolution Reconstructed Images Using First- and Second-Order Structural Degradation

    Jiansheng QIAN  Bo HU  Lijuan TANG  Jianying ZHANG  Song LIANG  

     
    PAPER-Image

      Vol:
    E102-A No:11
      Page(s):
    1533-1541

    Super resolution (SR) image reconstruction has attracted increasing attention these years and many SR image reconstruction algorithms have been proposed for restoring a high-resolution image from one or multiple low-resolution images. However, how to objectively evaluate the quality of SR reconstructed images remains an open problem. Although a great number of image quality metrics have been proposed, they are quite limited to evaluate the quality of SR reconstructed images. Inspired by this, this paper presents a blind quality index for SR reconstructed images using first- and second-order structural degradation. First, the SR reconstructed image is decomposed into multi-order derivative magnitude maps, which are effective for first- and second-order structural representation. Then, log-energy based features are extracted on these multi-order derivative magnitude maps in the frequency domain. Finally, support vector regression is used to learn the quality model for SR reconstructed images. The results of extensive experiments that were conducted on one public database demonstrate the superior performance of the proposed method over the existing quality metrics. Moreover, the proposed method is less dependent on the number of training images and has low computational cost.

  • Quality Index for Benchmarking Image Inpainting Algorithms with Guided Regional Statistics

    Song LIANG  Leida LI  Bo HU  Jianying ZHANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2019/04/01
      Vol:
    E102-D No:7
      Page(s):
    1430-1433

    This letter presents an objective quality index for benchmarking image inpainting algorithms. Under the guidance of the masks of damaged areas, the boundary region and the inpainting region are first located. Then, the statistical features are extracted from the boundary and inpainting regions respectively. For the boundary region, we utilize Weibull distribution to fit the gradient magnitude histograms of the exterior and interior regions around the boundary, and the Kullback-Leibler Divergence (KLD) is calculated to measure the boundary distortions caused by imperfect inpainting. Meanwhile, the quality of the inpainting region is measured by comparing the naturalness factors between the inpainted image and the reference image. Experimental results demonstrate that the proposed metric outperforms the relevant state-of-the-art quality metrics.

  • A Subcarrier-Reference Scheme for Multiuser MISO-OFDMA Systems with Low Probability of Interception

    Wenyu LUO  Liang JIN  Yingsong LI  

     
    LETTER-Fundamental Theories for Communications

      Vol:
    E94-B No:10
      Page(s):
    2872-2876

    Recently, Li and Xia proposed a physical-layer security design to guarantee a low probability of interception (LPI) for asynchronous cooperative systems without relying on upper-layer data encryption. The proposed scheme utilizes diagonal unitary codes to perform different encoding in the frequency domain over subcarriers within each OFDM block to randomize the transmitted signals. To build on their idea, in this letter, a subcarrier-reference (SR) transmission scheme is proposed with deliberate signal randomization to achieve LPI in multiuser MISO-OFDMA systems. For each user, one of the allocated subcarriers is chosen by the transmitter to send reference signals, and others are chosen to send the user's information symbols. By some deliberate signal randomization, the eavesdropper cannot detect the transmitted symbols, while the authorized users can operate the system successfully without knowledge of the channels by subcarrier-reference demodulation. Extensive simulations are conducted to demonstrate the scheme's effectiveness.

  • Long-Term Tracking Based on Multi-Feature Adaptive Fusion for Video Target

    Hainan ZHANG  Yanjing SUN  Song LI  Wenjuan SHI  Chenglong FENG  

     
    PAPER-Fundamentals of Information Systems

      Pubricized:
    2018/02/02
      Vol:
    E101-D No:5
      Page(s):
    1342-1349

    The correlation filter-based trackers with an appearance model established by single feature have poor robustness to challenging video environment which includes factors such as occlusion, fast motion and out-of-view. In this paper, a long-term tracking algorithm based on multi-feature adaptive fusion for video target is presented. We design a robust appearance model by fusing powerful features including histogram of gradient, local binary pattern and color-naming at response map level to conquer the interference in the video. In addition, a random fern classifier is trained as re-detector to detect target when tracking failure occurs, so that long-term tracking is implemented. We evaluate our algorithm on large-scale benchmark datasets and the results show that the proposed algorithm have more accurate and more robust performance in complex video environment.

  • Facilitating Incentive-Compatible Access Probability Selection in Wireless Random Access Networks

    Bo GU  Cheng ZHANG  Kyoko YAMORI  Zhenyu ZHOU  Song LIU  Yoshiaki TANAKA  

     
    PAPER-Network

      Vol:
    E98-B No:11
      Page(s):
    2280-2290

    This paper studies the impact of integrating pricing with connection admission control (CAC) on the congestion management practices in contention-based wireless random access networks. Notably, when the network is free of charge, each self-interested user tries to occupy the channel as much as possible, resulting in the inefficient utilization of network resources. Pricing is therefore adopted as incentive mechanism to encourage users to choose their access probabilities considering the real-time network congestion level. A Stackelberg leader-follower game is formulated to analyze the competitive interaction between the service provider and the users. In particular, each user chooses the access probability that optimizes its payoff, while the self-interested service provider decides whether to admit or to reject the user's connection request in order to optimize its revenue. The stability of the Stackelberg leader-follower game in terms of convergence to the Nash equilibrium is established. The proposed CAC scheme is completely distributed and can be implemented by individual access points using only local information. Compared to the existing schemes, the proposed scheme achieves higher revenue gain, higher user payoff, and higher QoS performance.

  • MQDF Retrained on Selected Sample Set

    Yanwei WANG  Xiaoqing DING  Changsong LIU  

     
    LETTER

      Vol:
    E94-D No:10
      Page(s):
    1933-1936

    This letter has retrained an MQDF classifier on the retraining set, which is constructed by samples locating near classification boundary. The method is evaluated on HCL2000 and HCD Chinese handwriting sets. The results show that the retrained MQDF outperforms MQDF and cascade MQDF on all test sets.

  • A Vulnerability in 5G Authentication Protocols and Its Countermeasure

    Xinxin HU  Caixia LIU  Shuxin LIU  Jinsong LI  Xiaotao CHENG  

     
    LETTER-Formal Approaches

      Pubricized:
    2020/03/27
      Vol:
    E103-D No:8
      Page(s):
    1806-1809

    5G network will serve billions of people worldwide in the near future and protecting human privacy from being violated is one of its most important goals. In this paper, we carefully studied the 5G authentication protocols (namely 5G AKA and EAP-AKA') and a location sniffing attack exploiting 5G authentication protocols vulnerability is found. The attack can be implemented by an attacker through inexpensive devices. To cover this vulnerability, a fix scheme based on the existing PKI mechanism of 5G is proposed to enhance the authentication protocols. The proposed scheme is successfully verified with formal methods and automatic verification tool TAMARIN. Finally, the communication overhead, computational cost and storage overhead of the scheme are analyzed. The results show that the security of the fixed authentication protocol is greatly improved by just adding a little calculation and communication overhead.

  • SEM Image Quality Assessment Based on Texture Inpainting

    Zhaolin LU  Ziyan ZHANG  Yi WANG  Liang DONG  Song LIANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2020/10/30
      Vol:
    E104-D No:2
      Page(s):
    341-345

    This letter presents an image quality assessment (IQA) metric for scanning electron microscopy (SEM) images based on texture inpainting. Inspired by the observation that the texture information of SEM images is quite sensitive to distortions, a texture inpainting network is first trained to extract texture features. Then the weights of the trained texture inpainting network are transferred to the IQA network to help it learn an effective texture representation of the distorted image. Finally, supervised fine-tuning is conducted on the IQA network to predict the image quality score. Experimental results on the SEM image quality dataset demonstrate the advantages of the presented method.

  • A Fast Fabric Defect Detection Framework for Multi-Layer Convolutional Neural Network Based on Histogram Back-Projection

    Guodong SUN  Zhen ZHOU  Yuan GAO  Yun XU  Liang XU  Song LIN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2019/08/26
      Vol:
    E102-D No:12
      Page(s):
    2504-2514

    In this paper we design a fast fabric defect detection framework (Fast-DDF) based on gray histogram back-projection, which adopts end to end multi-convoluted network model to realize defect classification. First, the back-projection image is established through the gray histogram on fabric image, and the closing operation and adaptive threshold segmentation method are performed to screen the impurity information and extract the defect regions. Then, the defect images segmented by the Fast-DDF are marked and normalized into the multi-layer convolutional neural network for training. Finally, in order to solve the problem of difficult adjustment of network model parameters and long training time, some strategies such as batch normalization of samples and network fine tuning are proposed. The experimental results on the TILDA database show that our method can deal with various defect types of textile fabrics. The average detection accuracy with a higher rate of 96.12% in the database of five different defects, and the single image detection speed only needs 0.72s.

  • Analysis and Optimization of Full-Duplex Access Point Deployment for WLANs

    Song LIU  Wei PENG  Biao HAN  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2018/12/19
      Vol:
    E102-B No:6
      Page(s):
    1209-1218

    Full-duplex access points (APs) deployment can significantly affect network performance of a wireless local area network (WLAN). Unlike in traditional half-duplex networks, location of a full-duplex AP will affect network coverage quality as well as full-duplex transmission opportunities. However, the effect of full-duplex AP deployment on network performance and the differences between half- and full-duplex AP deployment have not been well investigated yet. In this paper, we first theoretically analyze the effect of full-duplex AP deployment on WLAN throughput. Exact full-duplex transmission probability is derived in presence of Rayleigh fading with different AP locations. Our analysis reveal that a good AP deployment profile can exploit more full-duplex transmission opportunities and greatly improve network performance. The full-duplex AP deployment problem is then formulated as an integer linear programming (ILP) problem in which our objective is to obtain optimized network throughput. Then we develop a heuristic algorithm to solve the formulated problem and optimal deployment profile can be produced. Simulation results validate that the WLAN throughput as well as full-duplex transmission opportunities can be significantly improved by our generated full-duplex AP deployment profile.

  • Time-Resolved Observation of Organic Light Emitting Diode under Reverse Bias Voltage by Extended Time Domain Reflectometry

    Weisong LIAO  Akira KAINO  Tomoaki MASHIKO  Sou KUROMASA  Masatoshi SAKAI  Kazuhiro KUDO  

     
    BRIEF PAPER

      Pubricized:
    2022/10/26
      Vol:
    E106-C No:6
      Page(s):
    236-239

    We observed dynamical carrier motion in an OLED device under an external reverse bias application using ExTDR measurement. The rectangular wave pulses were used in our ExTDR to observe the transient impedance of the OLED sample. The falling edge of the transmission waveform reflects the transient impedance after applying pulse voltage during the pulse width. The observed pulse width variation at the falling edge waveform indicates that the frontline of the hole distribution in the hole transport layer was forced to move backward to the ITO electrode.

  • LFWS: Long-Operation First Warp Scheduling Algorithm to Effectively Hide the Latency for GPUs

    Song LIU  Jie MA  Chenyu ZHAO  Xinhe WAN  Weiguo WU  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2023/02/10
      Vol:
    E106-A No:8
      Page(s):
    1043-1050

    GPUs have become the dominant computing units to meet the need of high performance in various computational fields. But the long operation latency causes the underutilization of on-chip computing resources, resulting in performance degradation when running parallel tasks on GPUs. A good warp scheduling strategy is an effective solution to hide latency and improve resource utilization. However, most current warp scheduling algorithms on GPUs ignore the ability of long operations to hide latency. In this paper, we propose a long-operation-first warp scheduling algorithm, LFWS, for GPU platforms. The LFWS filters warps in the ready state to a ready queue and updates the queue in time according to changes in the status of the warp. The LFWS divides the warps in the ready queue into long and short operation groups based on the type of operations in their instruction buffers, and it gives higher priority to the long-operating warp in the ready queue. This can effectively use the long operations to hide some of the latency from each other and enhance the system's ability to hide the latency. To verify the effectiveness of the LFWS, we implement the LFWS algorithm on a simulation platform GPGPU-Sim. Experiments are conducted over various CUDA applications to evaluate the performance of LFWS algorithm, compared with other five warp scheduling algorithms. The results show that the LFWS algorithm achieves an average performance improvement of 8.01% and 5.09%, respectively, over three traditional and two novel warp scheduling algorithms, effectively improving computational resource utilization on GPU.

  • Siamese Transformer for Saliency Prediction Based on Multi-Prior Enhancement and Cross-Modal Attention Collaboration

    Fazhan YANG  Xingge GUO  Song LIANG  Peipei ZHAO  Shanhua LI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2023/06/20
      Vol:
    E106-D No:9
      Page(s):
    1572-1583

    Visual saliency prediction has improved dramatically since the advent of convolutional neural networks (CNN). Although CNN achieves excellent performance, it still cannot learn global and long-range contextual information well and lacks interpretability due to the locality of convolution operations. We proposed a saliency prediction model based on multi-prior enhancement and cross-modal attention collaboration (ME-CAS). Concretely, we designed a transformer-based Siamese network architecture as the backbone for feature extraction. One of the transformer branches captures the context information of the image under the self-attention mechanism to obtain a global saliency map. At the same time, we build a prior learning module to learn the human visual center bias prior, contrast prior, and frequency prior. The multi-prior input to another Siamese branch to learn the detailed features of the underlying visual features and obtain the saliency map of local information. Finally, we use an attention calibration module to guide the cross-modal collaborative learning of global and local information and generate the final saliency map. Extensive experimental results demonstrate that our proposed ME-CAS achieves superior results on public benchmarks and competitors of saliency prediction models. Moreover, the multi-prior learning modules enhance images express salient details, and model interpretability.

  • An Interpretable Feature Selection Based on Particle Swarm Optimization

    Yi LIU  Wei QIN  Qibin ZHENG  Gensong LI  Mengmeng LI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2022/05/09
      Vol:
    E105-D No:8
      Page(s):
    1495-1500

    Feature selection based on particle swarm optimization is often employed for promoting the performance of artificial intelligence algorithms. However, its interpretability has been lacking of concrete research. Improving the stability of the feature selection method is a way to effectively improve its interpretability. A novel feature selection approach named Interpretable Particle Swarm Optimization is developed in this paper. It uses four data perturbation ways and three filter feature selection methods to obtain stable feature subsets, and adopts Fuch map to convert them to initial particles. Besides, it employs similarity mutation strategy, which applies Tanimoto distance to choose the nearest 1/3 individuals to the previous particles to implement mutation. Eleven representative algorithms and four typical datasets are taken to make a comprehensive comparison with our proposed approach. Accuracy, F1, precision and recall rate indicators are used as classification measures, and extension of Kuncheva indicator is employed as the stability measure. Experiments show that our method has a better interpretability than the compared evolutionary algorithms. Furthermore, the results of classification measures demonstrate that the proposed approach has an excellent comprehensive classification performance.