The search functionality is under construction.

Author Search Result

[Author] Kyoko YAMORI(12hit)

1-12hit
  • Facilitating Incentive-Compatible Access Probability Selection in Wireless Random Access Networks

    Bo GU  Cheng ZHANG  Kyoko YAMORI  Zhenyu ZHOU  Song LIU  Yoshiaki TANAKA  

     
    PAPER-Network

      Vol:
    E98-B No:11
      Page(s):
    2280-2290

    This paper studies the impact of integrating pricing with connection admission control (CAC) on the congestion management practices in contention-based wireless random access networks. Notably, when the network is free of charge, each self-interested user tries to occupy the channel as much as possible, resulting in the inefficient utilization of network resources. Pricing is therefore adopted as incentive mechanism to encourage users to choose their access probabilities considering the real-time network congestion level. A Stackelberg leader-follower game is formulated to analyze the competitive interaction between the service provider and the users. In particular, each user chooses the access probability that optimizes its payoff, while the self-interested service provider decides whether to admit or to reject the user's connection request in order to optimize its revenue. The stability of the Stackelberg leader-follower game in terms of convergence to the Nash equilibrium is established. The proposed CAC scheme is completely distributed and can be implemented by individual access points using only local information. Compared to the existing schemes, the proposed scheme achieves higher revenue gain, higher user payoff, and higher QoS performance.

  • Cost- and Energy-Aware Multi-Flow Mobile Data Offloading Using Markov Decision Process

    Cheng ZHANG  Bo GU  Zhi LIU  Kyoko YAMORI  Yoshiaki TANAKA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    657-666

    With the rapid increase in demand for mobile data, mobile network operators are trying to expand wireless network capacity by deploying wireless local area network (LAN) hotspots on which they can offload their mobile traffic. However, these network-centric methods usually do not fulfill the interests of mobile users (MUs). Taking into consideration many issues, MUs should be able to decide whether to offload their traffic to a complementary wireless LAN. Our previous work studied single-flow wireless LAN offloading from a MU's perspective by considering delay-tolerance of traffic, monetary cost and energy consumption. In this paper, we study the multi-flow mobile data offloading problem from a MU's perspective in which a MU has multiple applications to download data simultaneously from remote servers, and different applications' data have different deadlines. We formulate the wireless LAN offloading problem as a finite-horizon discrete-time Markov decision process (MDP) and establish an optimal policy by a dynamic programming based algorithm. Since the time complexity of the dynamic programming based offloading algorithm is still high, we propose a low time complexity heuristic offloading algorithm with performance sacrifice. Extensive simulations are conducted to validate our proposed offloading algorithms.

  • Duopoly Competition in Time-Dependent Pricing for Improving Revenue of Network Service Providers

    Cheng ZHANG  Bo GU  Kyoko YAMORI  Sugang XU  Yoshiaki TANAKA  

     
    PAPER

      Vol:
    E96-B No:12
      Page(s):
    2964-2975

    Due to network users' different time-preference, network traffic load usually significantly differs at different time. In traffic peak time, network congestion may happen, which make the quality of service for network users deteriorate. There are essentially two ways to improve the quality of services in this case: (1) Network service providers (NSPs) over-provision network capacity by investment; (2) NSPs use time-dependent pricing (TDP) to reduce the traffic at traffic peak time. However, over-provisioning network capacity can be costly. Therefore, some researchers have proposed TDP to control congestion as well as improve the revenue of NSP. But to the best of our knowledge, all of the literature related time-dependent pricing scheme only consider the monopoly NSP case. In this paper, a duopoly NSP case is studied. The NSPs try to maximize their overall revenue by setting time-dependent price, while users choose NSP by considering their own preference, congestion status in the networks and the price set by the NSPs. Analytical and experimental results show that the TDP benefits the NSPs, but the revenue improvement is limited due to the competition effect.

  • Optimal Pricing for Service Provision in Heterogeneous Cloud Market

    Xianwei LI  Bo GU  Cheng ZHANG  Zhi LIU  Kyoko YAMORI  Yoshiaki TANAKA  

     
    PAPER-Network

      Pubricized:
    2018/12/17
      Vol:
    E102-B No:6
      Page(s):
    1148-1159

    In recent years, the adoption of Software as a Service (SaaS) cloud services has surpassed that of Infrastructure as a Service (IaaS) cloud service and is now the focus of attention in cloud computing. The cloud market is becoming highly competitive owing to the increasing number of cloud service providers (CSPs), who are likely to exhibit different cloud capacities, i.e., the cloud market is heterogeneous. Moreover, as different users generally exhibit different Quality of Service (QoS) preferences, it is challenging to set prices for cloud services of good QoS. In this study, we investigate the price competition in the heterogeneous cloud market where two SaaS providers, denoted by CSP1 and CSP2, lease virtual machine (VM) instances from IaaS providers to offer cloud-based application services to users. We assume that CSP1 only has M/M/1 queue of VM instances owing to its limited cloud resources, whereas CSP2 has M/M/∞ queue of VM instances reflecting its adequate resources. We consider two price competition scenarios in which two CSPs engage in two games: one is a noncooperative strategic game (NSG) where the two CSPs set prices simultaneously and the other is a Stackelberg game (SG) where CSP2 sets the price first as the leader and is followed by CSP1, who sets the price in response to CSP2. Each user decides which cloud services to purchase (if purchases are to be made) based on the prices and QoS. The NSG scenario corresponds to the practical cloud market, where two CSPs with different cloud capacities begin to offer cloud services simultaneously; meanwhile, the SG scenario covers the instance where a more recent CSP plans to enter a cloud market whose incumbent CSP has larger cloud resources. Equilibrium is achieved in each of the scenarios. Numerical results are presented to verify our theoretical analysis.

  • A Game Theoretic Framework for Bandwidth Allocation and Pricing in Federated Wireless Networks

    Bo GU  Kyoko YAMORI  Sugang XU  Yoshiaki TANAKA  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1109-1116

    With the proliferation of IEEE 802.11 wireless local area networks, large numbers of wireless access points have been deployed, and it is often the case that a user can detect several access points simultaneously in dense metropolitan areas. Most owners, however, encrypt their networks to prevent the public from accessing them due to the increased traffic and security risk. In this work, we use pricing as an incentive mechanism to motivate the owners to share their networks with the public, while at the same time satisfying users' service demand. Specifically, we propose a “federated network” concept, in which radio resources of various wireless local area networks are managed together. Our algorithm identifies two candidate access points with the lowest price being offered (if available) to each user. We then model the price announcements of access points as a game, and characterize the Nash Equilibrium of the system. The efficiency of the Nash Equilibrium solution is evaluated via simulation studies as well.

  • Route Instruction Mechanism for Mobile Users Leveraging Distributed Wireless Resources

    Takeshi KAKEHI  Ryoichi SHINKUMA  Tutomu MURASE  Gen MOTOYOSHI  Kyoko YAMORI  Tatsuro TAKAHASHI  

     
    PAPER

      Vol:
    E95-B No:6
      Page(s):
    1965-1973

    The market growths of smart-phones and thin clients have been significantly increasing communication traffic in mobile networks. To handle the increased traffic, network operators should consider how to leverage distributed wireless resources such as distributed spots of wireless local access networks. In this paper, we consider the system where multiple moving users share distributed wireless access points on their traveling routes between their start and goal points and formulate as an optimization problem. Then, we come up with three algorithms as a solution for the problem. The key idea here is 'longcut route instruction', in which users are instructed to choose a traveling route where less congested access points are available; even if the moving distance increases, the throughput for users in the system would improve. In this paper, we define the gain function. Moreover, we analyze the basic characteristics of the system using as a simple model as possible.

  • A Deep Reinforcement Learning Based Approach for Cost- and Energy-Aware Multi-Flow Mobile Data Offloading

    Cheng ZHANG  Zhi LIU  Bo GU  Kyoko YAMORI  Yoshiaki TANAKA  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1625-1634

    With the rapid increase in demand for mobile data, mobile network operators are trying to expand wireless network capacity by deploying wireless local area network (LAN) hotspots on to which they can offload their mobile traffic. However, these network-centric methods usually do not fulfill the interests of mobile users (MUs). Taking into consideration many issues such as different applications' deadlines, monetary cost and energy consumption, how the MU decides whether to offload their traffic to a complementary wireless LAN is an important issue. Previous studies assume the MU's mobility pattern is known in advance, which is not always true. In this paper, we study the MU's policy to minimize his monetary cost and energy consumption without known MU mobility pattern. We propose to use a kind of reinforcement learning technique called deep Q-network (DQN) for MU to learn the optimal offloading policy from past experiences. In the proposed DQN based offloading algorithm, MU's mobility pattern is no longer needed. Furthermore, MU's state of remaining data is directly fed into the convolution neural network in DQN without discretization. Therefore, not only does the discretization error present in previous work disappear, but also it makes the proposed algorithm has the ability to generalize the past experiences, which is especially effective when the number of states is large. Extensive simulations are conducted to validate our proposed offloading algorithms.

  • Utility-Based Distributed Association Control Scheme with User Guidance for IEEE802.11 Wireless LANs

    Takahiro IWAMI  Irda ROSLAN  Yumi TAKAKI  Kyoko YAMORI  Chikara OHTA  Hisashi TAMAKI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:8
      Page(s):
    1700-1714

    At present, wireless local area networks (WLANs) based on IEEE802.11 are widely deployed in both private premises and public areas. In a public environment offering several access points (APs), a station (STA) needs to choose which AP to associate with. In this paper, we propose a distributed association control scheme with user guidance to increase users' utility based on uplink and downlink throughputs of individual stations. As part of the scheme, we also present a simple throughput estimation method that considers physical data rate, traffic demand, and frame length in both uplink and downlink. Basically, in the proposed scheme, an AP selects a user and suggests that the user moves to another AP if certain conditions are met. The user then decides whether to accept the suggestion or not in a self-interested manner or in a voluntary manner for the benefit of all users including the user's own self. Through simulations under this condition, we confirm that our distributed association control scheme can improve user utility and fairness even though the channel quality of the new AP is unknown in advance.

  • An Incentive-Compatible Load Distribution Approach for Wireless Local Area Networks with Usage-Based Pricing

    Bo GU  Kyoko YAMORI  Sugang XU  Yoshiaki TANAKA  

     
    PAPER

      Vol:
    E96-B No:2
      Page(s):
    451-458

    Recent studies have shown that the traffic load is often distributed unevenly among the access points. Such load imbalance results in an ineffective bandwidth utilization. The load imbalance and the consequent ineffective bandwidth utilization could be alleviated via intelligently selecting user-AP associations. In this paper, the diversity in users' utilities is sufficiently taken into account, and a Stackelberg leader-follower game is formulated to obtain the optimal user-AP association. The effectiveness of the proposed algorithm on improving the degree of load balance is evaluated via simulations. Simulation results show that the performance of the proposed algorithm is superior to or at least comparable with the best existing algorithms.

  • Multi-Stage Non-cooperative Game for Pricing and Connection Admission Control in Wireless Local Area Networks

    Bo GU  Kyoko YAMORI  Sugang XU  Yoshiaki TANAKA  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E96-B No:7
      Page(s):
    1986-1996

    This paper focuses on learning the economic behaviour of the access point (AP) and users in wireless local area networks (WLANs), and using a game theoretic approach to analyze the interactions among them. Recent studies have shown that the AP would adopt a simple, yet optimal, fixed rate pricing strategy when the AP has an unlimited uplink bandwidth to the Internet and the channel capacity of WLAN is unlimited. However, the fixed rate strategy fails to be optimal if a more realistic model with limited capacity is considered. A substitute pricing scheme for access service provisioning is hence proposed. In particular, the AP first estimates the probable utility degradation of existing users consequent upon the admission of an incoming user. Second, the AP decides: (i) whether the incoming user should be accepted; and (ii) the price to be announced in order to try to maximize the overall revenue. The condition, under which the proposed scheme results in a perfect Bayesian equilibrium (PBE), is investigated.

  • A Stackelberg Game Based Pricing and User Association for Spectrum Splitting Macro-Femto HetNets

    Bo GU  Zhi LIU  Cheng ZHANG  Kyoko YAMORI  Osamu MIZUNO  Yoshiaki TANAKA  

     
    PAPER-Network

      Pubricized:
    2017/07/10
      Vol:
    E101-B No:1
      Page(s):
    154-162

    The demand for wireless traffic is increasing rapidly, which has posed huge challenges to mobile network operators (MNOs). A heterogeneous network (HetNet) framework, composed of a marcocell and femtocells, has been proved to be an effective way to cope with the fast-growing traffic demand. In this paper, we assume that both the macrocell and femtocells are owned by the same MNO, with revenue optimization as its ultimate goal. We aim to propose a pricing strategy for macro-femto HetNets with a user centric vision, namely, mobile users would have their own interest to make rational decisions on selecting between the macrocell and femtocells to maximize their individual benefit. We formulate a Stackelberg game to analyze the interactions between the MNO and users, and obtain the equilibrium solution for the Stackelberg game. Via extensive simulations, we evaluate the proposed pricing strategy in terms of its efficiency with respect to the revenue optimization.

  • Oligopoly Competition in Time-Dependent Pricing for Improving Revenue of Network Service Providers with Complete and Incomplete Information

    Cheng ZHANG  Bo GU  Kyoko YAMORI  Sugang XU  Yoshiaki TANAKA  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    20-32

    Network traffic load usually differs significantly at different times of a day due to users' different time-preference. Network congestion may happen in traffic peak times. In order to prevent this from happening, network service providers (NSPs) can either over-provision capacity for demand at peak times of the day, or use dynamic time-dependent pricing (TDP) scheme to reduce the demand at traffic peak times. Since over-provisioning network capacity is costly, many researchers have proposed TDP schemes to control congestion as well as to improve the revenue of NSPs. To the best of our knowledge, all the studies on TDP schemes consider only the monopoly or duopoly NSP case. In our previous work, the duopoly NSP case has been studied with the assumption that each NSP has complete information of quality of service (QoS) of the other NSP. In this paper, an oligopoly NSP case is studied. NSPs try to maximize their overall revenue by setting time-dependent price, while users choose NSPs by considering their own time preference, congestion status in the networks and the price set by the NSPs. The interactions among NSPs are modeled as an oligopoly Bertrand game. Firstly, assuming that each NSP has complete information of QoS of all NSPs, a unique Nash equilibrium of the game is established under the assumption that users' valuation of QoS is uniformly distributed. Secondly, the assumption of complete information of QoS of all NSPs is relaxed, and a learning algorithm is proposed for NSPs to achieve the Nash equilibrium of the game. Analytical and experimental results show that NSPs can benefit from TDP scheme, however, not only the competition effect but also the incomplete information among NSPs causes revenue loss for NSPs under the TDP scheme.