1-2hit |
Hainan ZHANG Yanjing SUN Song LI Wenjuan SHI Chenglong FENG
The correlation filter-based trackers with an appearance model established by single feature have poor robustness to challenging video environment which includes factors such as occlusion, fast motion and out-of-view. In this paper, a long-term tracking algorithm based on multi-feature adaptive fusion for video target is presented. We design a robust appearance model by fusing powerful features including histogram of gradient, local binary pattern and color-naming at response map level to conquer the interference in the video. In addition, a random fern classifier is trained as re-detector to detect target when tracking failure occurs, so that long-term tracking is implemented. We evaluate our algorithm on large-scale benchmark datasets and the results show that the proposed algorithm have more accurate and more robust performance in complex video environment.
Xiaozhou CHENG Rui LI Yanjing SUN Yu ZHOU Kaiwen DONG
Visible-Infrared Person Re-identification (VI-ReID) is a challenging pedestrian retrieval task due to the huge modality discrepancy and appearance discrepancy. To address this tough task, this letter proposes a novel gray augmentation exploration (GAE) method to increase the diversity of training data and seek the best ratio of gray augmentation for learning a more focused model. Additionally, we also propose a strong all-modality center-triplet (AMCT) loss to push the features extracted from the same pedestrian more compact but those from different persons more separate. Experiments conducted on the public dataset SYSU-MM01 demonstrate the superiority of the proposed method in the VI-ReID task.