1-3hit |
Weina ZHOU Xinxin HUANG Xiaoyang ZENG
As a kind of marine vehicles, Unmanned Surface Vehicles (USV) are widely used in military and civilian fields because of their low cost, good concealment, strong mobility and high speed. High-precision detection of obstacles plays an important role in USV autonomous navigation, which ensures its subsequent path planning. In order to further improve obstacle detection performance, we propose an encoder-decoder architecture named Fusion Refinement Network (FRN). The encoder part with a deeper network structure enables it to extract more rich visual features. In particular, a dilated convolution layer is used in the encoder for obtaining a large range of obstacle features in complex marine environment. The decoder part achieves the multiple path feature fusion. Attention Refinement Modules (ARM) are added to optimize features, and a learnable fusion algorithm called Feature Fusion Module (FFM) is used to fuse visual information. Experimental validation results on three different datasets with real marine images show that FRN is superior to state-of-the-art semantic segmentation networks in performance evaluation. And the MIoU and MPA of the FRN can peak at 97.01% and 98.37% respectively. Moreover, FRN could maintain a high accuracy with only 27.67M parameters, which is much smaller than the latest obstacle detection network (WaSR) for USV.
Xinxin HU Caixia LIU Shuxin LIU Xiaotao CHENG
More and more attacks are found due to the insecure channel between different network domains in legacy mobile network. In this letter, we discover an attack exploiting SUCI to track a subscriber in 5G network, which is directly caused by the insecure air channel. To cover this issue, a secure authentication scheme is proposed utilizing the existing PKI mechanism. Not only dose our protocol ensure the authentication signalling security in the channel between UE and SN, but also SN and HN. Further, formal methods are adopted to prove the security of the proposed protocol.
Xinxin HU Caixia LIU Shuxin LIU Jinsong LI Xiaotao CHENG
5G network will serve billions of people worldwide in the near future and protecting human privacy from being violated is one of its most important goals. In this paper, we carefully studied the 5G authentication protocols (namely 5G AKA and EAP-AKA') and a location sniffing attack exploiting 5G authentication protocols vulnerability is found. The attack can be implemented by an attacker through inexpensive devices. To cover this vulnerability, a fix scheme based on the existing PKI mechanism of 5G is proposed to enhance the authentication protocols. The proposed scheme is successfully verified with formal methods and automatic verification tool TAMARIN. Finally, the communication overhead, computational cost and storage overhead of the scheme are analyzed. The results show that the security of the fixed authentication protocol is greatly improved by just adding a little calculation and communication overhead.