The search functionality is under construction.

Author Search Result

[Author] Ye WANG(21hit)

1-20hit(21hit)

  • Comprehensive Performance Analysis of Two-Way Multi-Relay System with Amplify-and-Forward Relaying

    Siye WANG  Yanjun ZHANG  Bo ZHOU  Wenbiao ZHOU  Dake LIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:3
      Page(s):
    666-673

    In this paper, we consider a two-way multi-relay scenario and analyze the bit error rate (BER) and outage performance of an amplify-and-forward (AF) relaying protocol. We first investigate the bit error probability by considering channel estimation error. With the derivation of effective signal-to-noise ratio (SNR) at the transceiver and its probability density function (PDF), we can obtain a closed form formulation of the total average error probability of two-way multi-relay system. Furthermore, we also derive exact expressions of the outage probability for two-way relay through the aid of a modified Bessel function. Finally, numerical experiments are performed to verify the analytical results and show that our theoretical derivations are exactly matched with simulations.

  • Performance Comparison of In-Band Full-Duplex and Half-Duplex Two-Hop Relaying with Channel Estimation Errors

    Siye WANG  Yonghua LI  Mingyao WANG  Wenbo XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/08/22
      Vol:
    E101-B No:2
      Page(s):
    573-581

    In this paper, we consider a two-hop communication system with an amplify-and-forward (AF) relay under channel estimation errors. According to the channel quality of the link between the base station (BS) and the relay, we investigate two typical relay scenarios. We study the capacity performance for both In-Band Full-Duplex (IBFD) and Half-Duplex (HD) transmission modes. Moreover, we consider two operation modes of the user equipment (UE) for each scenario. Closed-form expressions of ergodic capacities with channel estimation errors are obtained for scenario-1. And we derive accurate approximations of ergodic capacities for scenario-2. Numerical experiments are conducted to verify the analytical results and show that our theoretical derivations are perfectly matched with the simulations. We show that with practical signal-to-noise ratio values and effective interference cancellation techniques, IBFD transmission is preferable in terms of capacity.

  • Sufficient and Necessary Conditions of Distributed Compressed Sensing with Prior Information

    Wenbo XU  Yupeng CUI  Yun TIAN  Siye WANG  Jiaru LIN  

     
    PAPER-General Fundamentals and Boundaries

      Vol:
    E100-A No:9
      Page(s):
    2013-2020

    This paper considers the recovery problem of distributed compressed sensing (DCS), where J (J≥2) signals all have sparse common component and sparse innovation components. The decoder attempts to jointly recover each component based on {Mj} random noisy measurements (j=1,…,J) with the prior information on the support probabilities, i.e., the probabilities that the entries in each component are nonzero. We give both the sufficient and necessary conditions on the total number of measurements $sum olimits_{j = 1}^J M_j$ that is needed to recover the support set of each component perfectly. The results show that when the number of signal J increases, the required average number of measurements $sum olimits_{j = 1}^J M_j/J$ decreases. Furthermore, we propose an extension of one existing algorithm for DCS to exploit the prior information, and simulations verify its improved performance.

  • Reusing the Results of Queries in MapReduce Systems by Adopting Shared Storage

    Zhanye WANG  Chuanyi LIU  Dongsheng WANG  

     
    PAPER

      Vol:
    E99-B No:2
      Page(s):
    315-325

    Over the last few years, Apache MapReduce has become the prevailing framework for large scale data processing. Instead of writing MapReduce programs which are too obscure to express, many developers usually adopt high level query languages, such as Hive or Pig Latin, to finish their complex queries. These languages automatically compile each query into a workflow of MapReduce jobs, so they greatly facilitate the querying and management of large datasets. One option to speed up the execution of workflows is to save the results produced previously and reuse them in the future if needed. In this paper we present SuperRack, which uses shared storage devices to store the results of each workflow and allows a new query to reuse these results in order to avoid redundant computation and hasten execution. We propose several novel techniques to improve the access and storage efficiency of the previous results. We also evaluate SuperRack to verify its feasibility and effectiveness. Experiments show that our solution outperforms Hive significantly under TPC-H benchmark and real life workloads.

  • Multiple Symbol Differential Detection Scheme for IEEE 802.15.4 BPSK Receivers

    Gaoyuan ZHANG  Hong WEN  Longye WANG  Xiaoli ZENG  Jie TANG  Runfa LIAO  Liang SONG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:11
      Page(s):
    1975-1979

    A simple and novel multiple-symbol differential detection (MSDD) scheme is proposed for IEEE 802.15.4 binary phase shift keying (BPSK) receivers. The detection is initiated by estimating and compensating the carrier frequency offset (CFO) effect in the chip sample of interest. With these new statistics, the decisions are jointly made by allowing the observation window length to be longer than two bit intervals. Simulation results demonstrate that detection reliability of the IEEE 802.15.4 BPSK receivers is significantly improved. Namely, at packet error rate (PER) of 1×10-3, the signal-to-noise ratio (SNR) gap between ideal coherent detection (perfect carrier reference phase and no CFO) with differential decoding and conventional optimal single differential coherent detection (SDCD) is filled by 2.1dB when the observation window length is set to 6bit intervals. Then, the benefit that less energy consumed by retransmissions is successfully achieved.

  • A Novel Construction of Asymmetric ZCZ Sequence Sets from Interleaving Perfect Sequence

    Longye WANG  Xiaoli ZENG  Hong WEN  

     
    PAPER-Sequences

      Vol:
    E97-A No:12
      Page(s):
    2556-2561

    An asymmetric zero correlation zone (A-ZCZ) sequence set is a type of ZCZ sequence set and consists of multiple sequence subsets. It is the most important property that is the cross-correlation function between arbitrary sequences belonging to different sequence subsets has quite a large zero-cross-correlation zone (ZCCZ). Our proposed A-ZCZ sequence sets can be constructed based on interleaved technique and orthogonality-preserving transformation by any perfect sequence of length P=Nq(2k+1) and Hadamard matrices of order T≥2, where N≥1, q≥1 and k≥1. If q=1, the novel sequence set is optimal ZCZ sequence set, which has parameters (TP,TN,2k+1) for all positive integers P=N(2k+1). The proposed A-ZCZ sequence sets have much larger ZCCZ, which are expected to be useful for designing spreading sequences for QS-CDMA systems.

  • Design of Asymmetric ZPC Sequences with Multiple Subsets via Interleaving Known ZPC Sequences

    Xiaoli ZENG  Longye WANG  Hong WEN  Gaoyuan ZHANG  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E101-A No:6
      Page(s):
    982-987

    By interleaving known Z-periodic complementary (ZPC) sequence set, a new ZPC sequence set is constructed with multiple ZPC sequence subsets based on an orthogonal matrix in this work. For this novel ZPC sequence set, which refer to as asymmetric ZPC (AZPC) sequence set, its inter-subset zero cross-correlation zone (ZCCZ) is larger than intra-subset zero correlation zone (ZCZ). In particular, if select a periodic perfect complementary (PC) sequence or PC sequence set and a discrete Fourier transform (DFT) matrix, the resultant sequence set is an inter-group complementary (IGC) sequence set. When a suitable shift sequence is chosen, the obtained IGC sequence set will be optimal in terms of the corresponding theoretical bound. Compared with the existing constructions of IGC sequence sets, the proposed method can provide not only flexible ZCZ width but also flexible choice of basic sequences, which works well in both synchronous and asynchronous operational modes. The proposed AZPC sequence sets are suitable for multiuser environments.

  • Capacity of Two-Way In-Band Full-Duplex Relaying with Imperfect Channel State Information

    Siye WANG  Mingyao WANG  Boyu JIA  Yonghua LI  Wenbo XU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/10/06
      Vol:
    E101-B No:4
      Page(s):
    1108-1115

    In this paper, we investigate the capacity performance of an in-band full-duplex (IBFD) amplify-and-forward two-way relay system under the effect of residual loop-back-interference (LBI). In a two-way IBFD relay system, two IBFD nodes exchange data with each other via an IBFD relay. Both two-way relaying and IBFD one-way relaying could double the spectrum efficiency theoretically. However, due to imperfect channel estimation, the performance of two-way relaying is degraded by self-interference at the receiver. Moreover, the performance of the IBFD relaying is deteriorated by LBI between the transmit antenna and the receive antenna of the node. Different from the IBFD one-way relay scenario, the IBFD two-way relay system will suffer from an extra level of LBI at the destination receiver. We derive accurate approximations of the average end-to-end capacities for both the IBFD and half-duplex modes. We evaluate the impact of the LBI and channel estimation errors on system performance. Monte Carlo simulations verify the validity of analytical results. It can be shown that with certain signal-to-noise ratio values and effective interference cancellation techniques, the IBFD transmission is preferable in terms of capacity. The IBFD two-way relaying is an attractive technique for practical applications.

  • An Empirical Study of Bugs in Software Build System

    Xin XIA  Xiaozhen ZHOU  David LO  Xiaoqiong ZHAO  Ye WANG  

     
    PAPER-Software Engineering

      Vol:
    E97-D No:7
      Page(s):
    1769-1780

    A build system converts source code, libraries and other data into executable programs by orchestrating the execution of compilers and other tools. The whole building process is managed by a software build system, such as Make, Ant, CMake, Maven, Scons, and QMake. Many studies have investigated bugs and fixes in several systems, but to our best knowledge, none focused on bugs in build systems. One significant feature of software build systems is that they should work on various platforms, i.e., various operating systems (e.g., Windows, Linux), various development environments (e.g., Eclipse, Visual Studio), and various programming languages (e.g., C, C++, Java, C#), so the study of software build systems deserves special consideration. In this paper, we perform an empirical study on bugs in software build systems. We analyze four software build systems, Ant, Maven, CMake and QMake, which are four typical and widely-used software build systems, and can be used to build Java, C, C++ systems. We investigate their bug database and code repositories, randomly sample a set of bug reports and their fixes (800 bugs reports totally, and 199, 250, 200, and 151 bug reports for Ant, Maven, CMake and QMake, respectively), and manually assign them into various categories. We find that 21.35% of the bugs belong to the external interface category, 18.23% of the bugs belong to the logic category, and 12.86% of the bugs belong to the configuration category. We also investigate the relationship between bug categories and bug severities, bug fixing time, and number of bug comments.

  • Accurate Library Recommendation Using Combining Collaborative Filtering and Topic Model for Mobile Development

    Xiaoqiong ZHAO  Shanping LI  Huan YU  Ye WANG  Weiwei QIU  

     
    PAPER-Software Engineering

      Pubricized:
    2018/12/18
      Vol:
    E102-D No:3
      Page(s):
    522-536

    Background: The applying of third-party libraries is an integral part of many applications. But the libraries choosing is time-consuming even for experienced developers. The automated recommendation system for libraries recommendation is widely researched to help developers to choose libraries. Aim: from software engineering aspect, our research aims to give developers a reliable recommended list of third-party libraries at the early phase of software development lifecycle to help them build their development environment faster; and from technical aspect, our research aims to build a generalizable recommendation system framework which combines collaborative filtering and topic modeling techniques, in order to improve the performance of libraries recommendation significantly. Our works on this research: 1) we design a hybrid methodology to combine collaborative filtering and LDA text mining technology; 2) we build a recommendation system framework successfully based on the above hybrid methodology; 3) we make a well-designed experiment to validate the methodology and framework which use the data of 1,013 mobile application projects; 4) we do the evaluation for the result of the experiment. Conclusions: 1) hybrid methodology with collaborative filtering and LDA can improve the performance of libraries recommendation significantly; 2) based on the hybrid methodology, the framework works very well on the libraries recommendation for helping developers' libraries choosing. Further research is necessary to improve the performance of the libraries recommendation including: 1) use more accurate NLP technologies improve the correlation analysis; 2) try other similarity calculation methodology for collaborative filtering to rise the accuracy; 3) on this research, we just bring the time-series approach to the framework and make an experiment as comparative trial, the result shows that the performance improves continuously, so in further research we plan to use time-series data-mining as the basic methodology to update the framework.

  • Asymmetric ZCZ Sequence Sets with Inter-Subset Uncorrelated Sequences via Interleaved Technique

    Longye WANG  Xiaoli ZENG  Hong WEN  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E100-A No:2
      Page(s):
    751-756

    An uncorrelated asymmetric ZCZ (UA-ZCZ) sequence set is a special version of an asymmetric ZCZ (A-ZCZ) sequence set, which contains multiple subsets and each subset is a typical ZCZ sequence set. One of the most important properties of UA-ZCZ sequnence set is that two arbitrary sequences from different sequence subsets are uncorrelated sequences, whose cross-correlation function (CCF) is zeros at all shifts. Based on interleaved technique and an uncorrelated sequence set, a new UA-ZCZ sequence set is obtained via interleaving a perfect sequence. The uncorrelated property of the UA-ZCZ sequence sets is expected to be useful for avoiding inter-cell interference of QS-CDMA systems.

  • Improving Natural Language Requirements Quality Using Workflow Patterns

    Ye WANG  Xiaohu YANG  Cheng CHANG  Alexander J. KAVS  

     
    PAPER-Software Engineering

      Vol:
    E96-D No:9
      Page(s):
    2065-2074

    Natural language (NL) requirements are usually human-centric and therefore error-prone and inaccurate. In order to improve the 3Cs of natural language requirements, namely Consistency, Correctness and Completeness, in this paper we propose a systematic pattern matching approach supporting both NL requirements modeling and inconsistency, incorrectness and incompleteness analysis among requirements. We first use business process modeling language to model NL requirements and then develop a formal language — Workflow Patterns-based Process Language (WPPL) — to formalize NL requirements. We leverage workflow patterns to perform two-level 3Cs checking on the formal representation based on a coherent set of checking rules. Our approach is illustrated through a real world financial service example — Global Equity Trading System (GETS).

  • Designs of Zero Correlation Zone Sequence Pair Set with Inter-Subset Uncorrelated Property

    Xiaoli ZENG  Longye WANG  Hong WEN  

     
    LETTER

      Vol:
    E100-A No:9
      Page(s):
    1936-1941

    An inter-subset uncorrelated zero-correlation zone (ZCZ) sequence pair set is one consisting of multiple ZCZ sequence pair subsets. What's more, two arbitrary sequence pairs which belong to different subsets should be uncorrelated sequence pairs in this set, i.e., the cross-correlation function (CCF) between arbitrary sequence pairs in different subsets are zeros at everywhere. Meanwhile, each subset is a typical ZCZ sequence pair set. First, a class of uncorrelated ZCZ (U-ZCZ) sequence pair sets is proposed from interleaving perfect sequence pairs. An U-ZCZ sequence pair set is a type of ZCZ sequence pair set, which of most important property is that the CCF between two arbitrary sequence pairs is zero at any shift. Then, a type of inter-subset uncorrelated ZCZ sequence pair set is obtained by interleaving proposed U-ZCZ sequence pair set. In particular, the novel inter-subset uncorrelated ZCZ sequence pair sets are expected to be useful for designing spreading codes for QS-CDMA systems.

  • Designs of Inter-Group Complementary Sequence Set from Interleaving Z-Periodic Complementary Sequences

    Longye WANG  Xiaoli ZENG  Hong WEN  

     
    LETTER-Coding Theory

      Vol:
    E99-A No:5
      Page(s):
    987-993

    Novel constructions of inter-group complementary (IGC) sequences are proposed based on Z-periodic complementary (ZPC) sequences and uncorrelated sequence set by taking advantages of interleaved operation. The presented methods can get IGC sequences from interleaving ZPC sequence set. The proposed methods not only can get polyphase IGC sequence set, but also can obtain binary and ternary IGC sequence set. In particular, with the aid of uncorrelated sequence, the number of available groups of IGC sequences from interleaving ZPC sequence set can be chosen with flexibility compared to the existed IGC sequences. The IGC sequences based code division multiple access (CDMA) systems may perform better on bit error rates than conventional sequences based interference-limited CDMA systems. Moreover, the novel IGC sequences may work well in both synchronous and asynchronous operational modes.

  • Compressed Cooperation in Amplify-and-Forward Relay Channels

    Wenbo XU  Yifan WANG  Yibing GAI  Siye WANG  Jiaru LIN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/10/17
      Vol:
    E100-B No:4
      Page(s):
    586-593

    The theory of compressed sensing (CS) is very attractive in that it makes it possible to reconstruct sparse signals with sub-Nyquist sampling rates. Considering that CS can be regarded as a joint source-channel code, it has been recently applied in communication systems and shown great potential. This paper studies compressed cooperation in an amplify-and-forward (CC-AF) relay channel. By discussing whether the source transmits the same messages in two phases, and the different cases of the measurement matrices used at the source and the relay, four decoding strategies are proposed and their transmission rates are analyzed theoretically. With the derived rates, we show by numerical simulations that CC-AF outperforms the direct compressed transmission without relay. In addition, the performance of CC-AF and the existing compressed cooperation with decode-and-forward relay is also compared.

  • An Empirical Study of Bugs in Industrial Financial Systems

    Xiao XUAN  Xiaoqiong ZHAO  Ye WANG  Shanping LI  

     
    LETTER-Software Engineering

      Pubricized:
    2015/09/15
      Vol:
    E98-D No:12
      Page(s):
    2322-2327

    Bugs in industrial financial systems have not been extensively studied. To address this gap, we focused on the empirical study of bugs in three systems, PMS, β-Analyzer, and OrderPro. Results showed the 3 most common types of bugs in industrial financial systems to be internal interface (19.00%), algorithm/method (17.67%), and logic (15.00%).

  • Parity-Check Polarization-Adjusted Convolutional Coding

    Qingping YU  You ZHANG  Renze LUO  Longye WANG  Xingwang LI  

     
    LETTER-Coding Theory

      Pubricized:
    2023/07/27
      Vol:
    E107-A No:2
      Page(s):
    187-191

    Polarization-adjusted convolutional (PAC) codes have better error-correcting performance than polar codes mostly because of the improved weight distribution brought by the convolutional pre-transformation. In this paper, we propose the parity check PAC (PC-PAC) codes to further improve error-correcting performance of PAC codes. The design principle is to establish parity check functions between bits with distinct row weights, such that information bits of lower reliability are re-protected by the PC relation. Moreover, an algorithm to select which bits to be involved in parity-check functions is also proposed to make sure that the constructed codes have fewer minimum-weight codewords. Simulation results show that the proposed PC-PAC codes can achieve nearly 0.2dB gain over PAC codes at frame error rate (FER) about 10-3 codes.

  • High-Power Photodiodes for Analog Applications Open Access

    Andreas BELING  Joe C. CAMPBELL  Kejia LI  Qinglong LI  Ye WANG  Madison E. WOODSON  Xiaojun XIE  Zhanyu YANG  

     
    INVITED PAPER

      Vol:
    E98-C No:8
      Page(s):
    764-768

    This paper summarizes recent progress on modified uni-traveling carrier photodiodes that have achieved RF output power levels of 1.8 Watt and 4.4 Watt in continuous wave and pulsed operation, respectively. Flip-chip bonded discrete photodiodes, narrowband photodiodes, and photodiodes integrated with antennas are described.

  • DNN Aided Joint Source-Channel Decoding Scheme for Polar Codes Open Access

    Qingping YU  You ZHANG  Zhiping SHI  Xingwang LI  Longye WANG  Ming ZENG  

     
    LETTER-Coding Theory

      Pubricized:
    2023/08/23
      Vol:
    E107-A No:5
      Page(s):
    845-849

    In this letter, a deep neural network (DNN) aided joint source-channel (JSCC) decoding scheme is proposed for polar codes. In the proposed scheme, an integrated factor graph with an unfolded structure is first designed. Then a DNN aided flooding belief propagation decoding (FBP) algorithm is proposed based on the integrated factor, in which both source and channel scaling parameters in the BP decoding are optimized for better performance. Experimental results show that, with the proposed DNN aided FBP decoder, the polar coded JSCC scheme can have about 2-2.5 dB gain over different source statistics p with source message length NSC = 128 and 0.2-1 dB gain over different source statistics p with source message length NSC = 512 over the polar coded JSCC system with existing BP decoder.

  • Novel Constructions of Cross Z-Complementary Pairs with New Lengths Open Access

    Longye WANG  Chunlin CHEN  Xiaoli ZENG  Houshan LIU  Lingguo KONG  Qingping YU  Qingsong WANG  

     
    PAPER-Information Theory

      Pubricized:
    2023/10/10
      Vol:
    E107-A No:7
      Page(s):
    989-996

    Spatial modulation (SM) is a type of multiple-input multiple-output (MIMO) technology that provides several benefits over traditional MIMO systems. SM-MIMO is characterized by its unique transmission principle, which results in lower costs, enhanced spectrum utilization, and reduced inter-channel interference. To optimize channel estimation performance over frequency-selective channels in the spatial modulation system, cross Z-complementary pairs (CZCPs) have been proposed as training sequences. The zero correlation zone (ZCZ) properties of CZCPs for auto-correlation sums and cross-correlation sums enable them to achieve optimal channel estimation performance. In this paper, we systematically construct CZCPs based on binary Golay complementary pairs and binary Golay complementary pairs via Turyn’s method. We employ a special matrix operation and concatenation method to obtain CZCPs with new lengths 2M + N and 2(M + L), where M and L are the lengths of binary GCP, and N is the length of binary GCP via Turyn’s method. Further, we obtain the perfect CZCP with new length 4N and extend the lengths of CZCPs.

1-20hit(21hit)