The search functionality is under construction.

Author Search Result

[Author] Quang Thang DUONG(2hit)

1-2hit
  • Dynamic Spectrum Control Aided Spectrum Sharing with Nonuniform Sampling-Based Channel Sounding

    Quang Thang DUONG  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:12
      Page(s):
    3172-3180

    This paper studies channel sounding for selfish dynamic spectrum control (S-DSC) in which each link dynamically maps its spectral components onto a necessary amount of discrete frequencies having the highest channel gain of the common system band. In S-DSC, it is compulsory to conduct channel sounding for the entire system band by using a reference signal whose spectral components are sparsely allocated by S-DSC. Using nonuniform sampling theory, this paper exploits the finite impulse response characteristic of frequency selective fading channels to carry out the channel sounding. However, when the number of spectral components is relatively small compared to the number of discrete frequencies of the system band, reliability of the channel sounding deteriorates severely due to the ill-conditioned problem and degradation in channel capacity of the next frame occurs as a result. Aiming at balancing frequency selection diversity effect and reliability of channel sounding, this paper proposes an S-DSC which allocates an appropriate number of spectral components onto discrete frequencies with low predicted channel gain besides mapping the rest onto those with high predicted channel gain. A numerical analysis confirms that the proposed S-DSC gives significant enhancement in channel capacity performance.

  • Adaptive Band Activity Ratio Control with Cascaded Energy Allocation for Amplify-and-Forward OFDM Relay Systems

    Quang Thang DUONG  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:11
      Page(s):
    2424-2434

    This paper proposes an adaptive band activity ratio control (ABC) with cascaded energy allocation (CEA) scheme to improve end-to-end spectral efficiency for two-hop amplify-and-forward orthogonal frequency division multiplexing relay systems under transmit energy constraint. Subchannel pairing (SP) based spectrum mapping maps spectral components transmitted over high gain subchannels in the source-to-relay link onto high gain subchannels of the relay-to-destination link to improve the spectral efficiency. However, SP suffers from a frame efficiency reduction due to the notification of information of spectral component order. To compensate for the deficiency of SP, the proposed scheme employs dynamic spectrum control with ABC in which spectral components are mapped onto subchannels having high channel gain in each link, while band activity ratio (BAR) is controlled to an optimal value, which is smaller than 1, so that all spectral components are transmitted over relatively high gain subchannels of the two links. To further improve the performance, energy allocation at the source node and the relay node is serially conducted based on convex optimization, and BAR is controlled to improve discrete-input continuous-output memoryless channel capacity at the relay node. In the proposed scheme, since only information of BAR needs to be notified, the notification overhead is drastically reduced compared to that in SP based spectrum mapping. Numerical analysis confirms that the proposed ABC combined with CEA significantly reduces the required notification overhead while achieving almost the same frame error rate performance compared with the SP based scheme.