The search functionality is under construction.

Author Search Result

[Author] Shinsuke IBI(13hit)

1-13hit
  • Adaptive Band Activity Ratio Control with Cascaded Energy Allocation for Amplify-and-Forward OFDM Relay Systems

    Quang Thang DUONG  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:11
      Page(s):
    2424-2434

    This paper proposes an adaptive band activity ratio control (ABC) with cascaded energy allocation (CEA) scheme to improve end-to-end spectral efficiency for two-hop amplify-and-forward orthogonal frequency division multiplexing relay systems under transmit energy constraint. Subchannel pairing (SP) based spectrum mapping maps spectral components transmitted over high gain subchannels in the source-to-relay link onto high gain subchannels of the relay-to-destination link to improve the spectral efficiency. However, SP suffers from a frame efficiency reduction due to the notification of information of spectral component order. To compensate for the deficiency of SP, the proposed scheme employs dynamic spectrum control with ABC in which spectral components are mapped onto subchannels having high channel gain in each link, while band activity ratio (BAR) is controlled to an optimal value, which is smaller than 1, so that all spectral components are transmitted over relatively high gain subchannels of the two links. To further improve the performance, energy allocation at the source node and the relay node is serially conducted based on convex optimization, and BAR is controlled to improve discrete-input continuous-output memoryless channel capacity at the relay node. In the proposed scheme, since only information of BAR needs to be notified, the notification overhead is drastically reduced compared to that in SP based spectrum mapping. Numerical analysis confirms that the proposed ABC combined with CEA significantly reduces the required notification overhead while achieving almost the same frame error rate performance compared with the SP based scheme.

  • Wireless Distributed Network: For Flexible Networking and Radio Resource Management

    Seiichi SAMPEI  Kei SAKAGUCHI  Shinsuke IBI  Koji YAMAMOTO  

     
    INVITED PAPER

      Vol:
    E93-B No:12
      Page(s):
    3218-3227

    This paper proposes a concept for a new technical field called wireless distributed network (WDN) as a strategic technical field to enable flexible networking and radio resource management (RRM) to cope with dynamic variation of spatially distributed traffic demands. As the core technical subject areas for the WDN, this paper identifies distributed networking for flexible network creation, cooperative transmission and reception for flexible link creation, and dynamic spectrum access for flexible radio resource management, and explains their technical features and challenges for constructing the WDN. This paper also discusses some already being studied application fields as well as potential future directions of the WDN applications.

  • EXIT Chart-Aided Design of LDPC Codes for Self-Coherent Detection with Turbo Equalizer for Optical Fiber Short-Reach Transmissions Open Access

    Noboru OSAWA  Shinsuke IBI  Koji IGARASHI  Seiichi SAMPEI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/01/16
      Vol:
    E102-B No:7
      Page(s):
    1301-1312

    This paper proposed an iterative soft interference canceller (IC) referred to as turbo equalizer for the self-coherent detection, and extrinsic information transfer (EXIT) chart based irregular low density parity check (LDPC) code optimization for the turbo equalizer in optical fiber short-reach transmissions. The self-coherent detection system is capable of linear demodulation by a single photodiode receiver. However, the self-coherent detection suffers from the interference induced by signal-signal beat components, and the suppression of the interference is a vital goal of self-coherent detection. For improving the error-free signal detection performance of the self-coherent detection, we proposed an iterative soft IC with the aid of forward error correction (FEC) decoder. Furthermore, typical FEC code is no longer appropriate for the iterative detection of the turbo equalizer. Therefore, we designed an appropriate LDPC code by using EXIT chart aided code design. The validity of the proposed turbo equalizer with the appropriate LDPC is confirmed by computer simulations.

  • Design of Criterion for Adaptively Scaled Belief in Iterative Large MIMO Detection Open Access

    Takumi TAKAHASHI  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/07/30
      Vol:
    E102-B No:2
      Page(s):
    285-297

    This paper proposes a new design criterion of adaptively scaled belief (ASB) in Gaussian belief propagation (GaBP) for large multi-user multi-input multi-output (MU-MIMO) detection. In practical MU detection (MUD) scenarios, the most vital issue for improving the convergence property of GaBP iterative detection is how to deal with belief outliers in each iteration. Such outliers are caused by modeling errors due to the fact that the law of large number does not work well when it is difficult to satisfy the large system limit. One of the simplest ways to mitigate the harmful impact of outliers is belief scaling. A typical approach for determining the scaling parameter for the belief is to create a look-up table (LUT) based on the received signal-to-noise ratio (SNR) through computer simulations. However, the instantaneous SNR differs among beliefs because the MIMO channels in the MUD problem are random; hence, the creation of LUT is infeasible. To stabilize the dynamics of the random MIMO channels, we propose a new transmission block based criterion that adapts belief scaling to the instantaneous channel state. Finally, we verify the validity of ASB in terms of the suppression of the bit error rate (BER) floor.

  • Iterative Carrier Frequency Offset Estimation with Independent Component Analysis in BLE Systems

    Masahiro TAKIGAWA  Takumi TAKAHASHI  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/07/14
      Vol:
    E104-B No:1
      Page(s):
    88-98

    This paper proposes iterative carrier frequency offset (CFO) compensation for spatially multiplexed Bluetooth Low Energy (BLE) signals using independent component analysis (ICA). We apply spatial division multiple access (SDMA) to BLE system to deal with massive number of connection requests of BLE devices expected in the future. According to specifications, each BLE peripheral device is assumed to have CFO of up to 150 [kHz] due to hardware impairments. ICA can resolve spatially multiplexed signals even if they include independent CFO. After the ICA separation, the proposed scheme compensates for the CFO. However, the length of the BLE packet preamble is not long enough to obtain accurate CFO estimates. In order to accurately conduct the CFO compensation using the equivalent of a long pilot signal, preamble and a part of estimated data in the previous process are utilized. In addition, we reveal the fact that the independent CFO of each peripheral improves the capability of ICA blind separation. The results confirm that the proposed scheme can effectively compensate for CFO in the range of up to 150[kHz], which is defined as the acceptable value in the BLE specification.

  • Space-Path Division Multiplexing Technique for Eigenmode Transmission System

    Shinsuke IBI  Seiichi SAMPEI  Norihiko MORINAGA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1960-1963

    This paper proposes a multiple-input multiple-output (MIMO) eigenmode transmission technique which transmits different data streams on eigenmodes of different multi-path components while suppressing intra and inter-eigenmode interferences by means of a turbo equalization technique. This paper also evaluates the effectiveness of the proposed system in frequency selective fading conditions. Computer simulation results confirms the proposed technique is effective even in high spatial correlation cases.

  • A Spectrum-Overlapped Resource Management for Turbo Equalizer in Uplink Future Multiple Access Channels

    Jungo GOTO  Osamu NAKAMURA  Kazunari YOKOMAKURA  Yasuhiro HAMAGUCHI  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER

      Vol:
    E95-B No:12
      Page(s):
    3679-3687

    This paper proposes a spectrum-overlapped resource management (SORM) technique where each user equipment (UE) can ideally obtain the frequency selection diversity gain under multi-user environments. In the SORM technique for cellular systems, under assumption of adopting a soft canceller with minimum mean square error (SC/MMSE) turbo equalizer, an evolved node B (eNB) accepts overlapped frequency resource allocation. As a result, each UE can use the frequency bins having the highest channel gain. However, the SORM becomes non-orthogonal access when the frequency bins having high channel gain for UEs are partially identical. In this case, the inter-user interference (IUI) caused by overlapping spectra among UEs is eventually canceled out by using the SC/MMSE turbo equalizer. Therefore, SORM can achieve better performance than orthogonal access e.g. FDMA when the IUI is completely canceled. This paper demonstrates that SORM has the potential to improve transmission performance, by extrinsic information transfer (EXIT) analysis. Moreover, this paper evaluates the block error rate (BLER) performance of the SORM and the FDMA. Consequently, this paper shows that the SORM outperforms the FDMA.

  • Adaptive Bandwidth Control for Dynamic Spectrum Control Aided Spectrum Sharing in Private Wireless Networks

    Tomomi AOKI  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1093-1099

    This paper proposes an adaptive bandwidth control scheme for the private wireless networks. Carrier sense multiple access with collision avoidance (CSMA/CA), which is commonly used within the private networks, is not efficient in terms of spectral efficiency due to its strict collision avoidance process. In order to relax the collision avoidance rule, this paper employs dynamic spectrum control (DSC), in which a certain number of discrete spectra having the higher channel gain is selected in a selfish manner with each link allowing a partial band interference. Such interference may be suppressed by the equalizer at the receiver. Aiming at optimal selection of the bandwidth for the selfish DSC according to channel realizations, in the sense of throughput maximization, this paper proposes a channel capacity maximization-based BAR control scheme. Computer simulations validate that the proposed scheme achieves high throughput efficiency.

  • Dynamic Spectrum Control Aided Spectrum Sharing with Nonuniform Sampling-Based Channel Sounding

    Quang Thang DUONG  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:12
      Page(s):
    3172-3180

    This paper studies channel sounding for selfish dynamic spectrum control (S-DSC) in which each link dynamically maps its spectral components onto a necessary amount of discrete frequencies having the highest channel gain of the common system band. In S-DSC, it is compulsory to conduct channel sounding for the entire system band by using a reference signal whose spectral components are sparsely allocated by S-DSC. Using nonuniform sampling theory, this paper exploits the finite impulse response characteristic of frequency selective fading channels to carry out the channel sounding. However, when the number of spectral components is relatively small compared to the number of discrete frequencies of the system band, reliability of the channel sounding deteriorates severely due to the ill-conditioned problem and degradation in channel capacity of the next frame occurs as a result. Aiming at balancing frequency selection diversity effect and reliability of channel sounding, this paper proposes an S-DSC which allocates an appropriate number of spectral components onto discrete frequencies with low predicted channel gain besides mapping the rest onto those with high predicted channel gain. A numerical analysis confirms that the proposed S-DSC gives significant enhancement in channel capacity performance.

  • On Approximated LLR for Single Carrier Millimeter-Wave Transmissions in the Presence of Phase Noise Open Access

    Makoto NISHIKORI  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/01/12
      Vol:
    E100-B No:7
      Page(s):
    1086-1093

    This paper proposes approximated log likelihood ratios (LLRs) for single carrier millimeter-wave (mmW) transmission systems in the presence of phase noise. In mmW systems, phase noise on carrier wave signals in very high frequency bands causes severe performance degradation. In order to mitigate the impairments of phase noise, forward error correction (FEC) techniques, such as low density parity check (LDPC) code, are effective. However, if the probabilistic model does not capture the exact behavior of the random process present in the received signal, FEC performance is severely degraded, especially in higher order modulation or high coding rate cases. To address this issue, we carefully examine the probabilistic model of minimum mean square error (MMSE) equalizer output including phase noise component. Based on the derived probabilistic model, approximated LLR computation methods with low computational burden are proposed. Computer simulations confirm that the approximated LLR computations on the basis of the derived probabilistic model are capable of improving bit error rate (BER) performance without sacrificing computational simplicity in the presence of phase noise.

  • An Iterative Cancellation Technique for Adjacent Channel Interference Induced by Amplifier Nonlinearity in 60GHz Band Wireless Communication Systems Open Access

    Noboru OSAWA  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/05/15
      Vol:
    E100-B No:11
      Page(s):
    2060-2069

    This paper proposes an iterative cancellation technique for adjacent channel interference (ACI), induced by amplifier nonlinearity in millimeter wave (mmW) communication systems. In mmW communications, a large spectrum leak is expected because of the amplifier nonlinearity, and such a spectrum leak disturbs multichannel utilization. In order to mitigate the ACI, iterative interference cancellation in the receiver side is designed in this paper. Typically, iterative interference cancellation is conducted by generating a soft replica of interference from the feedback of the decoder, and subtracting the replica from the received signals. In this case, the canceller must know the amplifier nonlinearity in order to regenerate a soft replica of ACI. In this paper, amplifier nonlinearity is estimated by subjecting the received pilot signals to polynomial regression. We reveal that using only pilot signals in estimating amplifier nonlinearity is insufficient for guaranteeing replica accuracy. To address this issue, the proposed scheme exploits the detected data sequence in the regression analysis. We demonstrate that the proposed ACI cancellation technique can effectively mitigate ACI in multichannel utilization.

  • Receive Beamforming Designed for Massive Multi-User MIMO Detection via Gaussian Belief Propagation Open Access

    Takanobu DOI  Jun SHIKIDA  Daichi SHIRASE  Kazushi MURAOKA  Naoto ISHII  Takumi TAKAHASHI  Shinsuke IBI  

     
    PAPER

      Pubricized:
    2023/03/08
      Vol:
    E106-B No:9
      Page(s):
    758-767

    This paper proposes two full-digital receive beamforming (BF) methods for low-complexity and high-accuracy uplink signal detection via Gaussian belief propagation (GaBP) at base stations (BSs) adopting massive multi-input multi-output (MIMO) for open radio access network (O-RAN). In addition, beyond fifth generation mobile communication (beyond 5G) systems will increase uplink capacity. In the scenarios such as O-RAN and beyond 5G, it is vital to reduce the cost of the BSs by limiting the bandwidth of fronthaul (FH) links, and the dimensionality reduction of the received signal based on the receive BF at a radio unit is a well-known strategy to reduce the amount of data transported via the FH links. In this paper, we clarify appropriate criteria for designing a BF weight considering the subsequent GaBP signal detection with the proposed methods: singular-value-decomposition-based BF and QR-decomposition-based BF with the aid of discrete-Fourier-transformation-based spreading. Both methods achieve the dimensionality reduction without compromising the desired signal power by taking advantage of a null space of channels. The proposed receive BF methods reduce correlations between the received signals in the BF domain, which improves the robustness of GaBP against spatial correlation among fading coefficients. Simulation results assuming realistic BS and user equipment arrangement show that the proposed methods improve detection capability while significantly reducing the computational cost.

  • Successive Interference Cancellation of ICA-Aided SDMA for GFSK Signaling in BLE Systems

    Masahiro TAKIGAWA  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2019/11/12
      Vol:
    E103-B No:5
      Page(s):
    495-503

    This paper proposes a successive interference cancellation (SIC) of independent component analysis (ICA) aided spatial division multiple access (SDMA) for Gaussian filtered frequency shift keying (GFSK) in Bluetooth low energy (BLE) systems. The typical SDMA scheme requires estimations of channel state information (CSI) using orthogonal pilot sequences. However, the orthogonal pilot is not embedded in the BLE packet. This fact motivates us to add ICA detector into BLE systems. In this paper, focusing on the covariance matrix of ICA outputs, SIC can be applied with Cholesky decomposition. Then, in order to address the phase ambiguity problems created by the ICA process, we propose a differential detection scheme based on the MAP algorithm. In practical scenarios, it is subject to carrier frequency offset (CFO) as well as symbol timing offset (STO) induced by the hardware impairments present in the BLE peripherals. The packet error rate (PER) performance is evaluated by computer simulations when BLE peripherals simultaneously communicate in the presence of CFO and STO.