The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Tomomi AOKI(2hit)

1-2hit
  • Adaptive Bandwidth Control for Dynamic Spectrum Control Aided Spectrum Sharing in Private Wireless Networks

    Tomomi AOKI  Shinsuke IBI  Seiichi SAMPEI  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1093-1099

    This paper proposes an adaptive bandwidth control scheme for the private wireless networks. Carrier sense multiple access with collision avoidance (CSMA/CA), which is commonly used within the private networks, is not efficient in terms of spectral efficiency due to its strict collision avoidance process. In order to relax the collision avoidance rule, this paper employs dynamic spectrum control (DSC), in which a certain number of discrete spectra having the higher channel gain is selected in a selfish manner with each link allowing a partial band interference. Such interference may be suppressed by the equalizer at the receiver. Aiming at optimal selection of the bandwidth for the selfish DSC according to channel realizations, in the sense of throughput maximization, this paper proposes a channel capacity maximization-based BAR control scheme. Computer simulations validate that the proposed scheme achieves high throughput efficiency.

  • Improved Estimation of Direction-of-Arrival by Adaptive Selection of Algorithms in Angular Spread Environments

    Tomomi AOKI  Yasuhiko TANABE  

     
    PAPER-Antennas and Propagation

      Vol:
    E98-B No:12
      Page(s):
    2454-2462

    This paper proposes a novel direction-of-arrival (DOA) estimation method that can reduce performance degradation due to angular spread. Some algorithms previously proposed for such estimation make assumptions about the distributions of amplitude and phase for incident waves because most DOA estimation algorithms are sensitive to angular spread. However, when the assumptions are inaccurate, these algorithms perform poorly as compared with algorithms without countermeasures against angular spread. In this paper, we propose a method for selecting an appropriate DOA estimation algorithm according to the channel vector of each source signal as estimated by independent component analysis. Computer simulations show that the proposed method can robustly estimate DOA in environments with angular spread.