The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Rebeka SULTANA(2hit)

1-2hit
  • Prediction of Driver's Visual Attention in Critical Moment Using Optical Flow

    Rebeka SULTANA  Gosuke OHASHI  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2023/01/26
      Vol:
    E106-D No:5
      Page(s):
    1018-1026

    In recent years, driver's visual attention has been actively studied for driving automation technology. However, the number of models is few to perceive an insight understanding of driver's attention in various moments. All attention models process multi-level image representations by a two-stream/multi-stream network, increasing the computational cost due to an increment of model parameters. However, multi-level image representation such as optical flow plays a vital role in tasks involving videos. Therefore, to reduce the computational cost of a two-stream network and use multi-level image representation, this work proposes a single stream driver's visual attention model for a critical situation. The experiment was conducted using a publicly available critical driving dataset named BDD-A. Qualitative results confirm the effectiveness of the proposed model. Moreover, quantitative results highlight that the proposed model outperforms state-of-the-art visual attention models according to CC and SIM. Extensive ablation studies verify the presence of optical flow in the model, the position of optical flow in the spatial network, the convolution layers to process optical flow, and the computational cost compared to a two-stream model.

  • GAN-based Image Translation Model with Self-Attention for Nighttime Dashcam Data Augmentation

    Rebeka SULTANA  Gosuke OHASHI  

     
    PAPER-Intelligent Transport System

      Pubricized:
    2023/06/27
      Vol:
    E106-A No:9
      Page(s):
    1202-1210

    High-performance deep learning-based object detection models can reduce traffic accidents using dashcam images during nighttime driving. Deep learning requires a large-scale dataset to obtain a high-performance model. However, existing object detection datasets are mostly daytime scenes and a few nighttime scenes. Increasing the nighttime dataset is laborious and time-consuming. In such a case, it is possible to convert daytime images to nighttime images by image-to-image translation model to augment the nighttime dataset with less effort so that the translated dataset can utilize the annotations of the daytime dataset. Therefore, in this study, a GAN-based image-to-image translation model is proposed by incorporating self-attention with cycle consistency and content/style separation for nighttime data augmentation that shows high fidelity to annotations of the daytime dataset. Experimental results highlight the effectiveness of the proposed model compared with other models in terms of translated images and FID scores. Moreover, the high fidelity of translated images to the annotations is verified by a small object detection model according to detection results and mAP. Ablation studies confirm the effectiveness of self-attention in the proposed model. As a contribution to GAN-based data augmentation, the source code of the proposed image translation model is publicly available at https://github.com/subecky/Image-Translation-With-Self-Attention