The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Rie TACHIBANA(2hit)

1-2hit
  • A Bag-of-Features Approach to Classify Six Types of Pulmonary Textures on High-Resolution Computed Tomography Open Access

    Rui XU  Yasushi HIRANO  Rie TACHIBANA  Shoji KIDO  

     
    PAPER-Computer-Aided Diagnosis

      Vol:
    E96-D No:4
      Page(s):
    845-855

    Computer-aided diagnosis (CAD) systems on diffuse lung diseases (DLD) were required to facilitate radiologists to read high-resolution computed tomography (HRCT) scans. An important task on developing such CAD systems was to make computers automatically recognize typical pulmonary textures of DLD on HRCT. In this work, we proposed a bag-of-features based method for the classification of six kinds of DLD patterns which were consolidation (CON), ground-glass opacity (GGO), honeycombing (HCM), emphysema (EMP), nodular (NOD) and normal tissue (NOR). In order to successfully apply the bag-of-features based method on this task, we focused to design suitable local features and the classifier. Considering that the pulmonary textures were featured by not only CT values but also shapes, we proposed a set of statistical measures based local features calculated from both CT values and eigen-values of Hessian matrices. Additionally, we designed a support vector machine (SVM) classifier by optimizing parameters related to both kernels and the soft-margin penalty constant. We collected 117 HRCT scans from 117 subjects for experiments. Three experienced radiologists were asked to review the data and their agreed-regions where typical textures existed were used to generate 3009 3D volume-of-interest (VOIs) with the size of 323232. These VOIs were separated into two sets. One set was used for training and tuning parameters, and the other set was used for evaluation. The overall recognition accuracy for the proposed method was 93.18%. The precisions/sensitivities for each texture were 96.67%/95.08% (CON), 92.55%/94.02% (GGO), 97.67%/99.21% (HCM), 94.74%/93.99% (EMP), 81.48%/86.03%(NOD) and 94.33%/90.74% (NOR). Additionally, experimental results showed that the proposed method performed better than four kinds of baseline methods, including two state-of-the-art methods on classification of DLD textures.

  • Classification of Pneumoconiosis on HRCT Images for Computer-Aided Diagnosis Open Access

    Wei ZHAO  Rui XU  Yasushi HIRANO  Rie TACHIBANA  Shoji KIDO  Narufumi SUGANUMA  

     
    PAPER-Computer-Aided Diagnosis

      Vol:
    E96-D No:4
      Page(s):
    836-844

    This paper describes a computer-aided diagnosis (CAD) method to classify pneumoconiosis on HRCT images. In Japan, the pneumoconiosis is divided into 4 types according to the density of nodules: Type 1 (no nodules), Type 2 (few small nodules), Type 3-a (numerous small nodules) and Type 3-b (numerous small nodules and presence of large nodules). Because most pneumoconiotic nodules are small-sized and irregular-shape, only few nodules can be detected by conventional nodule extraction methods, which would affect the classification of pneumoconiosis. To improve the performance of nodule extraction, we proposed a filter based on analysis the eigenvalues of Hessian matrix. The classification of pneumoconiosis is performed in the following steps: Firstly the large-sized nodules were extracted and cases of type 3-b were recognized. Secondly, for the rest cases, the small nodules were detected and false positives were eliminated. Thirdly we adopted a bag-of-features-based method to generate input vectors for a support vector machine (SVM) classifier. Finally cases of type 1,2 and 3-a were classified. The proposed method was evaluated on 175 HRCT scans of 112 subjects. The average accuracy of classification is 90.6%. Experimental result shows that our method would be helpful to classify pneumoconiosis on HRCT.