The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] RongCun WANG(3hit)

1-3hit
  • Spectrum-Based Fault Localization Framework to Support Fault Understanding Open Access

    Yong WANG  Zhiqiu HUANG  Yong LI  RongCun WANG  Qiao YU  

     
    LETTER-Software Engineering

      Pubricized:
    2019/01/15
      Vol:
    E102-D No:4
      Page(s):
    863-866

    A spectrum-based fault localization technique (SBFL), which identifies fault location(s) in a buggy program by comparing the execution statistics of the program spectra of passed executions and failed executions, is a popular automatic debugging technique. However, the usefulness of SBFL is mainly affected by the following two factors: accuracy and fault understanding in reality. To solve this issue, we propose a SBFL framework to support fault understanding. In the framework, we firstly localize a suspicious fault module to start debugging and then generate a weighted fault propagation graph (WFPG) for the hypothesis fault module, which weights the suspiciousness for the nodes to further perform block-level fault localization. In order to evaluate the proposed framework, we conduct a controlled experiment to compare two different module-level SBFL approaches and validate the effectiveness of WFPG. According to our preliminary experiments, the results are promising.

  • Improving the Accuracy of Spectrum-Based Fault Localization Using Multiple Rules

    Rongcun WANG  Shujuan JIANG  Kun ZHANG  Qiao YU  

     
    PAPER-Software Engineering

      Pubricized:
    2020/02/26
      Vol:
    E103-D No:6
      Page(s):
    1328-1338

    Software fault localization, as one of the essential activities in program debugging, aids to software developers to identify the locations of faults in a program, thus reducing the cost of program debugging. Spectrum-based fault localization (SBFL), as one of the representative localization techniques, has been intensively studied. The localization technique calculates the probability of each program entity that is faulty by a certain suspiciousness formula. The accuracy of SBFL is not always as satisfactory as expected because it neglects the contextual information of statement executions. Therefore, we proposed 5 rules, i.e., random, the maximum coverage, the minimum coverage, the maximum distance, and the minimum distance, to improve the accuracy of SBFL for further. The 5 rules can effectively use the contextual information of statement executions. Moreover, they can be implemented on the traditional SBFL techniques using suspiciousness formulas with little effort. We empirically evaluated the impacts of the rules on 17 suspiciousness formulas. The results show that all 5 rules can significantly improve the ranking of faulty statements. Particularly, for the faults difficult to locate, the improvement is more remarkable. Generally, the rules can effectively reduce the number of statements examined by an average of more than 19%. Compared with other rules, the minimum coverage rule generates better results. This indicates that the application of the test case having the minimum coverage capability for fault localization is more effective.

  • Spectrum-Based Fault Localization Using Fault Triggering Model to Refine Fault Ranking List

    Yong WANG  Zhiqiu HUANG  Rongcun WANG  Qiao YU  

     
    PAPER-Software Engineering

      Pubricized:
    2018/07/04
      Vol:
    E101-D No:10
      Page(s):
    2436-2446

    Spectrum-based fault localization (SFL) is a lightweight approach, which aims at helping debuggers to identity root causes of failures by measuring suspiciousness for each program component being a fault, and generate a hypothetical fault ranking list. Although SFL techniques have been shown to be effective, the fault component in a buggy program cannot always be ranked at the top due to its complex fault triggering models. However, it is extremely difficult to model the complex triggering models for all buggy programs. To solve this issue, we propose two simple fault triggering models (RIPRα and RIPRβ), and a refinement technique to improve fault absolute ranking based on the two fault triggering models, through ruling out some higher ranked components according to its fault triggering model. Intuitively, our approach is effective if a fault component was ranked within top k in the two fault ranking lists outputted by the two fault localization strategies. Experimental results show that our approach can significantly improve the fault absolute ranking in the three cases.