The search functionality is under construction.

Author Search Result

[Author] Runze WU(2hit)

1-2hit
  • Forecasting Network Traffic at Large Time Scales by Using Dual-Related Method

    Liangrui TANG  Shiyu JI  Shimo DU  Yun REN  Runze WU  Xin WU  

     
    PAPER-Network

      Pubricized:
    2017/04/24
      Vol:
    E100-B No:11
      Page(s):
    2049-2059

    Network traffic forecasts, as it is well known, can be useful for network resource optimization. In order to minimize the forecast error by maximizing information utilization with low complexity, this paper concerns the difference of traffic trends at large time scales and fits a dual-related model to predict it. First, by analyzing traffic trends based on user behavior, we find both hour-to-hour and day-to-day patterns, which means that models based on either of the single trends are unable to offer precise predictions. Then, a prediction method with the consideration of both daily and hourly traffic patterns, called the dual-related forecasting method, is proposed. Finally, the correlation for traffic data is analyzed based on model parameters. Simulation results demonstrate the proposed model is more effective in reducing forecasting error than other models.

  • A Spectrum-Sharing Approach in Heterogeneous Networks Based on Multi-Objective Optimization

    Runze WU  Jiajia ZHU  Liangrui TANG  Chen XU  Xin WU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/12/27
      Vol:
    E100-B No:7
      Page(s):
    1145-1151

    Deploying low power nodes (LPNs), which reuse the spectrum licensed to a macrocell network, is considered to be a promising way to significantly boost network capacity. Due to the spectrum-sharing, the deployment of LPNs could trigger the severe problem of interference including intra-tier interference among dense LPNs and inter-tier interference between LPNs and the macro base station (MBS), which influences the system performance strongly. In this paper, we investigate a spectrum-sharing approach in the downlink for two-tier networks, which consists of small cells (SCs) with several LPNs and a macrocell with a MBS, aiming to mitigate the interference and improve the capacity of SCs. The spectrum-sharing approach is described as a multi-objective optimization problem. The problem is solved by the nondominated sorting genetic algorithm version II (NSGA-II), and the simulations show that the proposed spectrum-sharing approach is superior to the existing one.