The search functionality is under construction.

Author Search Result

[Author] Sang-Hoon KIM(3hit)

1-3hit
  • A Case for Low-Latency Communication Layer for Distributed Operating Systems

    Sang-Hoon KIM  

     
    LETTER-Software System

      Pubricized:
    2021/09/06
      Vol:
    E104-D No:12
      Page(s):
    2244-2247

    There have been increasing demands for distributed operating systems to better utilize scattered resources over multiple nodes. This paper enlightens the challenges and requirements for the communication layers for distributed operating systems, and makes a case for a versatile, high-performance communication layer over InfiniBand network.

  • Facial Region Detection Using Range Color Information

    Sang-Hoon KIM  Hyoung-Gon KIM  

     
    PAPER

      Vol:
    E81-D No:9
      Page(s):
    968-975

    This paper proposes an object oriented face region detection and tracking method using range color information. Range segmentation of the objects are obtained from the complicated background using disparity histogram (DH). The facial regions among the range segmented objects are detected using skin-color transform technique that provides a facial region enhanced gray-level image. Computationally efficient matching pixel count (MPC) disparity measure is introduced to enhance the matching accuracy by removing the effect of the unexpected noise in the boundary region. Redundancy operations inherent in the area-based matching operation are removed to enhance the processing speed. For the skin-color transformation, the generalized facial color distribution (GFCD) is modeled by 2D Gaussian function in a normalized color space. Disparity difference histogram (DDH) concept from two consecutive frames is introduced to estimate the range information effectively. Detailed geometrical analysis provides exact variation of range information of moving object. The experimental results show that the proposed algorithm works well in various environments, at a rate of 1 frame per second with 512 480 resolution in general purpose workstation.

  • Revisiting Shared Cache Contention Problems: A Practical Hardware-Software Cooperative Approach

    Eunji PAK  Sang-Hoon KIM  Jaehyuk HUH  Seungryoul MAENG  

     
    PAPER-Computer System

      Vol:
    E96-D No:7
      Page(s):
    1457-1466

    Although shared caches allow the dynamic allocation of limited cache capacity among cores, traditional LRU replacement policies often cannot prevent negative interference among cores. To address the contention problem in shared caches, cache partitioning and application scheduling techniques have been extensively studied. Partitioning explicitly determines cache capacity for each core to maximize the overall throughput. On the other hand, application scheduling by operating systems groups the least interfering applications for each shared cache, when multiple shared caches exist in systems. Although application scheduling can mitigate the contention problem without any extra hardware support, its effect can be limited for some severe contentions. This paper proposes a low cost solution, based on application scheduling with a simple cache insertion control. Instead of using a full hardware-based cache partitioning mechanism, the proposed technique mostly relies on application scheduling. It selectively uses LRU insertion to the shared caches, which can be added with negligible hardware changes from the current commercial processor designs. For the completeness of cache interference evaluation, this paper examines all possible mixes from a set of applications, instead of using a just few selected mixes. The evaluation shows that the proposed technique can mitigate the cache contention problem effectively, close to the ideal scheduling and partitioning.