1-1hit |
Satoko KAGAMI Fumitsugu SUZUKI Takayuki HAMAMOTO
We propose a CMOS image sensor that realizes wide dynamic range imaging and nonlinear representation of I/O characteristics. The proposed image sensor controls the integration time for each pixel based on the brightness distribution of objects. The histogram at the end of the integration is estimated from the early intermediate photodiode values that are read out to an external circuit. Using the estimated histogram, the imaging parameters, which control the integration time pixel-by-pixel, are optimized in the external circuit. According to the imaging parameters, the intermediate photodiode value is compared with the threshold and reset to the starting value depending on the comparison result. These processes repeat several times. At the end of the integration, the photodiode value is reconstructed by using the imaging parameters. Then, wide dynamic range images with adapted I/O characteristics are obtained. We have fabricated a prototype with a size of 6464 pixels using a 0.35-µm 2-poly 4-metal CMOS process. In this paper, we explain the principle of the proposed sensor and discuss the system architecture and its operation. The experimental results obtained using the prototype are also presented, and we verify its effectiveness.