The search functionality is under construction.

Author Search Result

[Author] Satoru JIMBO(2hit)

1-2hit
  • A Hybrid Integer Encoding Method for Obtaining High-Quality Solutions of Quadratic Knapsack Problems on Solid-State Annealers

    Satoru JIMBO  Daiki OKONOGI  Kota ANDO  Thiem Van CHU  Jaehoon YU  Masato MOTOMURA  Kazushi KAWAMURA  

     
    PAPER

      Pubricized:
    2022/05/26
      Vol:
    E105-D No:12
      Page(s):
    2019-2031

    For formulating Quadratic Knapsack Problems (QKPs) into the form of Quadratic Unconstrained Binary Optimization (QUBO), it is necessary to introduce an integer variable, which converts and incorporates the knapsack capacity constraint into the overall energy function. In QUBO, this integer variable is encoded with auxiliary binary variables, and the encoding method used for it affects the behavior of Simulated Annealing (SA) significantly. For improving the efficiency of SA for QKP instances, this paper first visualized and analyzed their annealing processes encoded by conventional binary and unary encoding methods. Based on this analysis, we proposed a novel hybrid encoding (HE), getting the best of both worlds. The proposed HE obtained feasible solutions in the evaluation, outperforming the others in small- and medium-scale models.

  • A Fully-Parallel Annealing Algorithm with Autonomous Pinning Effect Control for Various Combinatorial Optimization Problems

    Daiki OKONOGI  Satoru JIMBO  Kota ANDO  Thiem Van CHU  Jaehoon YU  Masato MOTOMURA  Kazushi KAWAMURA  

     
    PAPER

      Pubricized:
    2023/09/19
      Vol:
    E106-D No:12
      Page(s):
    1969-1978

    Annealing computation has recently attracted attention as it can efficiently solve combinatorial optimization problems using an Ising spin-glass model. Stochastic cellular automata annealing (SCA) is a promising algorithm that can realize fast spin-update by utilizing its parallel computing capability. However, in SCA, pinning effect control to suppress the spin-flip probability is essential, making escaping from local minima more difficult than serial spin-update algorithms, depending on the problem. This paper proposes a novel approach called APC-SCA (Autonomous Pinning effect Control SCA), where the pinning effect can be controlled autonomously by focusing on individual spin-flip. The evaluation results using max-cut, N-queen, and traveling salesman problems demonstrate that APC-SCA can obtain better solutions than the original SCA that uses pinning effect control pre-optimized by a grid search. Especially in solving traveling salesman problems, we confirm that the tour distance obtained by APC-SCA is up to 56.3% closer to the best-known compared to the conventional approach.