1-2hit |
This letter presents a race-free mixed serial-parallel comparison (RFMSPC) scheme which uses both serial and parallel CAMs in a match line. A self-reset search line scheme for the serial CAM is proposed to avoid the timing race problem and additional timing penalties. Various 32 entry CAMs are designed using 90 nm 1.2 V CMOS process to verify the proposed RFMSPC scheme. It shows that the RFMSPC saves power consumption by 40%, 53% and 63% at the cost of a 4%, 6% and 16% increase in search time according to 1, 2, and 4 serial CAM bits in a match line.
Jisu KIM Jee-Hwan SONG Seung-Hyuk KANG Sei-Seung YOON Seong-Ook JUNG
Spin-torque transfer magnetic random access memory (STT-MRAM) is a promising technology for next generation nonvolatile universal memory because it reduces the high write current required by conventional MRAM and enables write current scaling as technology becomes smaller in size. However, the sensing margin is not improved in STT-MRAM and tends to decrease with technology scaling due to the lowered supply voltage and increased process variation. Moreover, read disturbance, which is an unwanted write in a read operation, can occur in STT-MRAM because its read and write operations use the same path. To overcome these problems, we present a load-line analysis method, which is useful for systematically analyzing the impacts of transistor size and gate voltage of MOSFETs on the sensing margin, and also propose an optimization procedure for the commonly applicable MRAM sensing circuits. This methodology constitutes an effective means to optimize the transistor size and gate voltage of MOSFETs and thus maximizes the sensing margin without causing read disturbance.