1-2hit |
We derive an efficient and simple analytical expression for estimating maximum simultaneous switching noise (SSN) on ground distribution networks in CMOS systems. In order to estimate maximum SSN voltages, we use α-power law MOS model and Taylor's series approximation. The accuracy of the proposed expression is verified by comparing the results with those of previous researches and HSPICE simulations under the contemporary process parameters and environmental conditions. The proposed method predicts the maximum SSN values more accurately when compared to existing approaches even in most practical cases such that there exist some output drivers not in transition.
This paper presents an efficient method for estimating maximum simultaneous switching noise (SSN) of ground interconnection networks in CMOS systems. For the derivation of maximum SSN expression we use α-power law MOS model and an iterative method to reduce error that may occur due to the assumptions used in the derivation process. The accuracy of the proposed method is verified by comparing the results with those of previous researches and HSPICE simulations under the present process parameters and environmental conditions.