1-2hit |
Seong-Jun HAHM Yuichi OHKAWA Masashi ITO Motoyuki SUZUKI Akinori ITO Shozo MAKINO
We propose an improved reference speaker weighting (RSW) and speaker cluster weighting (SCW) approach that uses an aspect model. The concept of the approach is that the adapted model is a linear combination of a few latent reference models obtained from a set of reference speakers. The aspect model has specific latent-space characteristics that differ from orthogonal basis vectors of eigenvoice. The aspect model is a "mixture-of-mixture" model. We first calculate a small number of latent reference models as mixtures of distributions of the reference speaker's models, and then the latent reference models are mixed to obtain the adapted distribution. The mixture weights are calculated based on the expectation maximization (EM) algorithm. We use the obtained mixture weights for interpolating mean parameters of the distributions. Both training and adaptation are performed based on likelihood maximization with respect to the training and adaptation data, respectively. We conduct a continuous speech recognition experiment using a Korean database (KAIST-TRADE). The results are compared to those of a conventional MAP, MLLR, RSW, eigenvoice and SCW. Absolute word accuracy improvement of 2.06 point was achieved using the proposed method, even though we use only 0.3 s of adaptation data.
Seong-Jun HAHM Yuichi OHKAWA Masashi ITO Motoyuki SUZUKI Akinori ITO Shozo MAKINO
In this paper, we propose an acoustic model that is robust to multiple noise environments, as well as a method for adapting the acoustic model to an environment to improve the model. The model is called "the multi-mixture model," which is based on a mixture of different HMMs each of which is trained using speech under different noise conditions. Speech recognition experiments showed that the proposed model performs better than the conventional multi-condition model. The method for adaptation is based on the aspect model, which is a "mixture-of-mixture" model. To realize adaptation using extremely small amount of adaptation data (i.e., a few seconds), we train a small number of mixture models, which can be interpreted as models for "clusters" of noise environments. Then, the models are mixed using weights, which are determined according to the adaptation data. The experimental results showed that the adaptation based on the aspect model improved the word accuracy in a heavy noise environment and showed no performance deterioration for all noise conditions, while the conventional methods either did not improve the performance or showed both improvement and degradation of recognition performance according to noise conditions.