The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Shan JIANG(3hit)

1-3hit
  • A Heuristic Algorithm for Solving the Aircraft Landing Scheduling Problem with a Landing Sequence Division Open Access

    Wen SHI  Shan JIANG  Xuan LIANG  Na ZHOU  

     
    PAPER-Intelligent Transport System

      Vol:
    E102-A No:8
      Page(s):
    966-973

    Aircraft landing scheduling (ALS) is one of the most important challenges in air traffic management. The target of ALS is to decide a landing scheduling sequence and calculate a landing time for each aircraft in terminal areas. These landing times are within time windows, and safety separation distances between aircraft must be kept. ALS is a complex problem, especially with a large number of aircraft. In this study, we propose a novel heuristic called CGIC to solve ALS problems. The CGIC consists of four components: a chunking rule based on costs, a landing subsequence generation rule, a chunk improvement heuristic, and a connection rule. In this algorithm, we reduce the complexity of the ALS problem by breaking it down into two or more subproblems with less aircraft. First, a feasible landing sequence is generated and divided into several subsequences as chunks by a chunking rule based on aircraft cost. Second, each chunk is regenerated by a constructive heuristic, and a perturbative heuristic is applied to improve the chunks. Finally, all chunks constitute a feasible landing sequence through a connection rule, and the landing time of each aircraft is calculated on the basis of this sequence. Simulations demonstrate that (a) the chunking rule based on cost outperforms other chunking rules based on time or weight for ALS in static instances, which have a large number of aircraft; (b) the proposed CGIC can solve the ALS problem up to 500 aircraft optimally; (c) in dynamic instances, CGIC can obtain high-quality solutions, and the computation time of CGIC is low enough to enable real-time execution.

  • Application of Feature Engineering for Phishing Detection

    Wei ZHANG  Huan REN  Qingshan JIANG  

     
    PAPER

      Pubricized:
    2016/01/28
      Vol:
    E99-D No:4
      Page(s):
    1062-1070

    Phishing attacks target financial returns by luring Internet users to exposure their sensitive information. Phishing originates from e-mail fraud, and recently it is also spread by social networks and short message service (SMS), which makes phishing become more widespread. Phishing attacks have drawn great attention due to their high volume and causing heavy losses, and many methods have been developed to fight against them. However, most of researches suffered low detection accuracy or high false positive (FP) rate, and phishing attacks are facing the Internet users continuously. In this paper, we are concerned about feature engineering for improving the classification performance on phishing web pages detection. We propose a novel anti-phishing framework that employs feature engineering including feature selection and feature extraction. First, we perform feature selection based on genetic algorithm (GA) to divide features into critical features and non-critical features. Then, the non-critical features are projected to a new feature by implementing feature extraction based on a two-stage projection pursuit (PP) algorithm. Finally, we take the critical features and the new feature as input data to construct the detection model. Our anti-phishing framework does not simply eliminate the non-critical features, but considers utilizing their projection in the process of classification, which is different from literatures. Experimental results show that the proposed framework is effective in detecting phishing web pages.

  • An Efficient Misalignment Method for Visual Tracking Based on Sparse Representation

    Shan JIANG  Cheng HAN  Xiaoqiang DI  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2018/05/14
      Vol:
    E101-D No:8
      Page(s):
    2123-2131

    Sparse representation has been widely applied to visual tracking for several years. In the sparse representation framework, tracking problem is transferred into solving an L1 minimization issue. However, during the tracking procedure, the appearance of target was affected by external environment. Therefore, we proposed a robust tracking algorithm based on the traditional sparse representation jointly particle filter framework. First, we obtained the observation image set from particle filter. Furthermore, we introduced a 2D transformation on the observation image set, which enables the tracking target candidates set more robust to handle misalignment problem in complex scene. Moreover, we adopt the occlusion detection mechanism before template updating, reducing the drift problem effectively. Experimental evaluations on five public challenging sequences, which exhibit occlusions, illuminating variations, scale changes, motion blur, and our tracker demonstrate accuracy and robustness in comparisons with the state-of-the-arts.