The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Shin KOMEDA(2hit)

1-2hit
  • Prediction of Residual Defects after Code Review Based on Reviewer Confidence

    Shin KOMEDA  Masateru TSUNODA  Keitaro NAKASAI  Hidetake UWANO  

     
    LETTER

      Pubricized:
    2023/12/08
      Vol:
    E107-D No:3
      Page(s):
    273-276

    A major approach to enhancing software quality is reviewing the source code to identify defects. To aid in identifying flaws, an approach in which a machine learning model predicts residual defects after implementing a code review is adopted. After the model has predicted the existence of residual defects, a second-round review is performed to identify such residual flaws. To enhance the prediction accuracy of the model, information known to developers but not recorded as data is utilized. Confidence in the review is evaluated by reviewers using a 10-point scale. The assessment result is used as an independent variable of the prediction model of residual defects. Experimental results indicate that confidence improves the prediction accuracy.

  • Measuring Mental Workload of Software Developers Based on Nasal Skin Temperature Open Access

    Keitaro NAKASAI  Shin KOMEDA  Masateru TSUNODA  Masayuki KASHIMA  

     
    LETTER-Software Engineering

      Pubricized:
    2024/07/11
      Vol:
    E107-D No:11
      Page(s):
    1444-1448

    To automatically measure the mental workload of developers, existing studies have used biometric measures such as brain waves and the heart rate. However, developers are often required to equip certain devices when measuring them, and can therefore be physically burdened. In this study, we evaluated the feasibility of non-contact biometric measures based on the nasal skin temperature (NST). In the experiment, the proposed biometric measures were more accurate than non-biometric measures.