1-3hit |
Kyohei ONO Shoichiro YAMASAKI Shinichiro MIYAZAKI Tomoko K. MATSUSHIMA
Optical code-division multiple-access (CDMA) techniques provide multi-user data transmission services in optical wireless and fiber communication systems. Several signature codes, such as modified prime sequence codes (MPSCs), generalized MPSCs (GMPSCs) and modified pseudo-orthogonal M-sequence sets, have been proposed for synchronous optical CDMA systems. In this paper, a new scheme is proposed for synchronous optical CDMA to increase the number of users and, consequently, to increase the total data rate without increasing the chip rate. The proposed scheme employs a GMPSC and an extended bi-orthogonal code which is a unipolar code generated from a bipolar Walsh code. Comprehensive comparisons between the proposed scheme and several conventional schemes are shown. Moreover, bit error rate performance and energy efficiency of the proposed scheme are evaluated comparing with those of the conventional optical CDMA schemes under atmospheric propagation environment.
Shoichiro YAMASAKI Tomoko K. MATSUSHIMA Shinichiro MIYAZAKI Kotoku OMURA Hirokazu TANAKA
Secret sharing is a method to protect information for security. The information is divided into n shares, and the information is reconstructed from any k shares but no knowledge of it is revealed from k-1 shares. Physical layer security is a method to yield a favorable receive condition to an authorized destination terminal in wireless communications based on multi-antenna transmission. In this study, we propose wireless packet communications protected by the secret sharing based on Reed Solomon coding and the physical layer security based on vector coding, which implements a single-antenna system and a multi-antenna system. Evaluation results show the validity of the proposed scheme.
Shinichiro MIYAZAKI Shoichiro YAMASAKI Ryuji KOHNO
This paper proposes a single-carrier transmission method based on an overlap frequency-domain equalizing (FDE) and a coherent averaging. FDE is a block-based equalizing technique using discrete Fourier transform. A cyclic prefix is often used to avoid inter-block interference under multipath channel conditions, which reduces transmission efficiency. An overlap FDE is a technique to avoid the cyclic prefix insertion, but the residual interferences often exist after the FDE processing according to the channel conditions. The method proposed in this paper suppresses the residual interferences by applying a coherent averaging to the FDE outputs and improve the equalization performances. Computer simulation shows the effect of the proposed technique over the multipath channels.