The search functionality is under construction.

Author Search Result

[Author] Shuping ZHANG(3hit)

1-3hit
  • A Low-Power VLSI Architecture for HEVC De-Quantization and Inverse Transform

    Heming SUN  Dajiang ZHOU  Shuping ZHANG  Shinji KIMURA  

     
    PAPER

      Vol:
    E99-A No:12
      Page(s):
    2375-2387

    In this paper, we present a low-power system for the de-quantization and inverse transform of HEVC. Firstly, we present a low-delay circuit to process the coded results of the syntax elements, and then reduce the number of multipliers from 16 to 4 for the de-quantization process of each 4x4 block. Secondly, we give two efficient data mapping schemes for the memory between de-quantization and inverse transform, and the memory for transpose. Thirdly, the zero information is utilized through the whole system. For two memory parts, the write and read operation of zero blocks/ rows/ coefficients can all be skipped to save the power consumption. The results show that up to 86% power consumption can be saved for the memory part under the configuration of “Random-access” and common QPs. For the logical part, the proposed architecture for de-quantization can reduce 77% area consumption. Overall, our system can support real-time coding for 8K x 4K 120fps video sequences and the normalized area consumption can be reduced by 68% compared with the latest work.

  • Low-Power Motion Estimation Processor with 3D Stacked Memory

    Shuping ZHANG  Jinjia ZHOU  Dajiang ZHOU  Shinji KIMURA  Satoshi GOTO  

     
    PAPER

      Vol:
    E98-A No:7
      Page(s):
    1431-1441

    Motion estimation (ME) is a key encoding component of almost all modern video coding standards. ME contributes significantly to video coding efficiency, but, it also consumes the most power of any component in a video encoder. In this paper, an ME processor with 3D stacked memory architecture is proposed to reduce memory and core power consumption. First, a memory die is designed and stacked with ME die. By adding face-to-face (F2F) pads and through-silicon-via (TSV) definitions, 2D electronic design automation (EDA) tools can be extended to support the proposed 3D stacking architecture. Moreover, a special memory controller is applied to control data transmission and timing between the memory die and the ME processor die. Finally, a 3D physical design is completed for the entire system. This design includes TSV/F2F placement, floor plan optimization, and power network generation. Compared to 2D technology, the number of input/output (IO) pins is reduced by 77%. After optimizing the floor plan of the processor die and memory die, the routing wire lengths are reduced by 13.4% and 50%, respectively. The stacking static random access memory contributes the most power reduction in this work. The simulation results show that the design can support real-time 720p @ 60fps encoding at 8MHz using less than 65mW in power, which is much better compared to the state-of-the-art ME processor.

  • A 7-Die 3D Stacked 3840×2160@120 fps Motion Estimation Processor

    Shuping ZHANG  Jinjia ZHOU  Dajiang ZHOU  Shinji KIMURA  Satoshi GOTO  

     
    PAPER

      Vol:
    E100-C No:3
      Page(s):
    223-231

    In this paper, a hamburger architecture with a 3D stacked reconfigurable memory is proposed for a 4K motion estimation (ME) processor. By positioning the memory dies on both the top and bottom sides of the processor die, the proposed hamburger architecture can reduce the usage of the signal through-silicon via (TSV), and balance the power delivery network and the clock tree of the entire system. It results in 1/3 reduction of the usage of signal TSVs. Moreover, a stacked reconfigurable memory architecture is proposed to reduce the fabrication complexity and further reduce the number of signal TSVs by more than 1/2. The reduction of signal TSVs in the entire design is 71.24%. Finally, we address unique issues that occur in electronic design automation (EDA) tools during 3D large-scale integration (LSI) designs. As a result, a 4K ME processor with 7-die stacking 3D system-on-chip design is implemented. The proposed design can support real time 3840 × 2160 @ 120 fps encoding at 130 MHz with less than 540 mW.