1-4hit |
Kazuo IWAMA Kazuhisa SETO Suguru TAMAKI
The planar Hajos calculus (PHC) is the Hajos calculus with the restriction that all the graphs that appear in the construction (including a final graph) must be planar. The degree-d planar Hajos calculus (PHC(dd)) is PHC with the restriction that all the graphs that appear in the construction (including a final graph) must have maximum degree at most d. We prove the followings: (1) If PHC is polynomially bounded, then for any d ≥ 4, PHC(dd+2) can generate any non-3-colorable planar graphs of maximum degree at most d in polynomial steps. (2) If PHC can generate any non-3-colorable planar graphs of maximum degree 4 in polynomial steps, then PHC is polynomially bounded.
Akinori KAWACHI Kenichi KAWANO Francois LE GALL Suguru TAMAKI
Unitary operator discrimination is a fundamental problem in quantum information theory. The basic version of this problem can be described as follows: Given a black box implementing a unitary operator U∈S:={U1, U2} under some probability distribution over S, the goal is to decide whether U=U1 or U=U2. In this paper, we consider the query complexity of this problem. We show that there exists a quantum algorithm that solves this problem with bounded error probability using $lceil{sqrt{6} heta_{ m cover}^{-1}} ceil$ queries to the black box in the worst case, i.e., under any probability distribution over S, where the parameter θcover, which is determined by the eigenvalues of $U_1^dagger {U_2}$, represents the “closeness” between U1 and U2. We also show that this upper bound is essentially tight: we prove that for every θcover > 0 there exist operators U1 and U2 such that any quantum algorithm solving this problem with bounded error probability requires at least $lceil{rac{2}{3 heta_{ m cover}}} ceil$ queries under uniform distribution over S.
Yoichi HANATANI Takashi HORIYAMA Kazuo IWAMA Suguru TAMAKI
The Hajos calculus is a nondeterministic procedure which generates the class of non-3-colorable graphs. If all non-3-colorable graphs can be constructed in polynomial steps by the calculus, then NP = co-NP holds. Up to date, however, it remains open whether there exists a family of graphs that cannot be generated in polynomial steps. To attack this problem, we propose two graph calculi PHC and PHC* that generate non-3-colorable planar graphs, where intermediate graphs in the calculi are also restricted to be planar. Then we prove that PHC and PHC* are sound and complete. We also show that PHC* can polynomially simulate PHC.