The search functionality is under construction.

Author Search Result

[Author] Sumiko MIYATA(7hit)

1-7hit
  • D2EcoSys: Decentralized Digital Twin EcoSystem Empower Co-Creation City-Level Digital Twins Open Access

    Kenji KANAI  Hidehiro KANEMITSU  Taku YAMAZAKI  Shintaro MORI  Aram MINE  Sumiko MIYATA  Hironobu IMAMURA  Hidenori NAKAZATO  

     
    INVITED PAPER

      Pubricized:
    2023/10/26
      Vol:
    E107-B No:1
      Page(s):
    50-62

    A city-level digital twin is a critical enabling technology to construct a smart city that helps improve citizens' living conditions and quality of life. Currently, research and development regarding the digital replica city are pursued worldwide. However, many research projects only focus on creating the 3D city model. A mechanism to involve key players, such as data providers, service providers, and application developers, is essential for constructing the digital replica city and producing various city applications. Based on this motivation, the authors of this paper are pursuing a research project, namely Decentralized Digital Twin EcoSystem (D2EcoSys), to create an ecosystem to advance (and self-grow) the digital replica city regarding time and space directions, city services, and values. This paper introduces an overview of the D2EcoSys project: vision, problem statement, and approach. In addition, the paper discusses the recent research results regarding networking technologies and demonstrates an early testbed built in the Kashiwa-no-ha smart city.

  • Threshold Relaxation and Holding Time Limitation Method for Accepting More General Calls under Emergency Trunk Reservation

    Kazuki TANABE  Sumiko MIYATA  Ken-ichi BABA  Katsunori YAMAOKA  

     
    PAPER

      Vol:
    E99-A No:8
      Page(s):
    1518-1528

    In emergency situations, telecommunication networks become congested due to large numbers of call requests. Also, some infrastructure breaks down, so undamaged communication resources must be utilized more efficiently. Therefore, several lines in telephone exchanges are generally reserved for emergency calls whose users communicate crucial information. The number of lines reserved for emergency calls is determined by a threshold, on a trunk reservation control method. To accept both required emergency calls and more general calls, the traffic intensity of arriving emergency calls should be estimated in advance, and a threshold should be configured so that the number of reserved lines becomes lower than the estimation. Moreover, we propose that the holding time for general calls should be positively limited. By guaranteeing the holding time sufficient for communicating essential information, holding time limitation reduces long-period calls so more general calls are accepted. In this paper, we propose a new CAC method to utilize undamaged communication resources more efficiently during emergencies. Our proposed method accepts more general calls by collaboratively relaxing the threshold of trunk reservation and limiting holding time of general calls. This method is targeted at not only the telephone exchange but also various systems on networks, e.g. base stations of the wireless network or SIP servers. With our method, the threshold is configured in consideration of the ratio of traffic intensities estimated in advance. We modeled the telephone exchange as a queueing loss system and calculated call-blocking rates of both emergency and general calls by using computer simulation. The comparison with the conventional holding time limitation method showed that our proposed method accepts the required number of emergency calls by appropriately relaxing the threshold, while suppressing the increase in call-blocking of general calls.

  • A User Allocation Method for DASH Multi-Servers Considering Coalition Structure Generation in Cooperative Game Open Access

    Sumiko MIYATA  Ryoichi SHINKUMA  

     
    INVITED PAPER

      Pubricized:
    2023/11/09
      Vol:
    E107-A No:4
      Page(s):
    611-618

    Streaming systems that can maintain Quality of Experience (QoE) for users have attracted much attention because they can be applied in various fields, such as emergency response training and medical surgery. Dynamic Adaptive Streaming over HTTP (DASH) is a typical protocol for streaming system. In order to improve QoE in DASH, a multi-server system has been presented by pseudo-increasing bandwidth through multiple servers. This multi-server system is designed to share streaming content efficiently in addition to having redundant server resources for each streaming content, which is excellent for fault tolerance. Assigning DASH server to users in these multi-servers environment is important to maintain QoE, thus a method of server assignment of users (user allocation method) for multi-servers is presented by using cooperative game theory. However, this conventional user allocation method does not take into account the size of the server bandwidth, thus users are concentrated on a particular server at the start of playback. Although the average required bit rate of video usually fluctuates, bit rate fluctuations are not taken into account. These phenomena may decrease QoE. In this paper, we propose a novel user allocation method using coalition structure generation in cooperative game theory to improve the QoE of all users in an immediate and stable manner in DASH environment. Our proposed method can avoid user concentration, since the bandwidth used by the overall system is taken into account. Moreover, our proposed method can be performed every time the average required bit rate changes. We demonstrate the effectiveness of our method through simulations using Network Simulator 3 (NS3).

  • Equality Based Flow-Admission Control by Using Mixed Loss and Delay System

    Sumiko MIYATA  Katsunori YAMAOKA  

     
    PAPER-Network System

      Vol:
    E95-B No:3
      Page(s):
    832-844

    We have proposed a novel call admission control (CAC) for maximizing total user satisfaction in a heterogeneous traffic network and showed the effectiveness of our CAC by using an optimal threshold from numerical analysis [1]. In our previous CAC, when a new broadband flow arrives and the total accommodated bandwidth is more than or equal to the threshold, the arriving new broadband flow is rejected. In actual networks, however, users may agree to wait for a certain period until the broadband flow, such as video, begins to play. In this paper, when total accommodated bandwidth is more than or equal to the threshold, arriving broadband flows wait instead of being rejected. As a result, we can greatly improve total user satisfaction.

  • Flow-Admission Control Based on Equality of Heterogeneous Traffic (Two-Type Flow Model)

    Sumiko MIYATA  Katsunori YAMAOKA  

     
    PAPER-Network System

      Vol:
    E93-B No:12
      Page(s):
    3564-3576

    Multimedia applications such as video and audio have recently come into much wider use. Because this heterogeneous traffic consumes most of the network's resources, call admission control (CAC) is required to maintain high-quality services. User satisfaction depends on CAC's success in accommodating application flows. Conventional CACs do not take into consideration user satisfaction because their main purpose is to improve the utilization of resources. Moreover, if we assume a service where an ISP provides a "flat-based charging," each user may receive same user satisfaction as a result of users being accommodated in a network, even if each has a different bandwidth. Therefore, we propose a novel CAC to maximize total user satisfaction based on a new philosophy where heterog eneous traffic is treated equally in networks. Theoretical analysis is used to derive optimal thresholds for various traffic configurations with a full search system. We also carried out theoretical numerical analysis to demonstrate the effectiveness of our new CAC. Moreover, we propose a sub-optimal threshold configuration obtained by using an approximation formula to develop practical CAC from these observations. We tested and confirmed that performance could be improved by using sub-optimal parameters.

  • Optimal Threshold Configuration Methods for Flow Admission Control with Cooperative Users

    Sumiko MIYATA  Katsunori YAMAOKA  Hirotsugu KINOSHITA  

     
    PAPER-Network

      Vol:
    E97-B No:12
      Page(s):
    2706-2719

    We have proposed a novel call admission control (CAC) method for maximizing total user satisfaction in a heterogeneous traffic network and showed their effectiveness by using the optimal threshold from numerical analysis [1],[2]. With these CAC methods, it is assumed that only selfish users exist in a network. However, we need to consider the possibility that some cooperative users exist who would agree to reduce their requested bandwidth to improve another user's Quality of Service (QoS). Under this assumption, conventional CAC may not be optimal. If there are cooperative users in the network, we need control methods that encourage such user cooperation. However, such “encourage” control methods have not yet been proposed. Therefore, in this paper, we propose novel CAC methods for cooperative users by using queueing theory. Numerical analyses show their effectiveness. We also analyze the characteristics of the optimal control parameter of the threshold.

  • Novel Access-Point Selection for User QoS and System Optimization Based on User Cooperative Moving

    Sumiko MIYATA  Tutomu MURASE  Katsunori YAMAOKA  

     
    PAPER

      Vol:
    E95-B No:6
      Page(s):
    1953-1964

    We propose an optimal access-point (AP) selection algorithm for maximizing the aggregated throughput of each AP (system throughput) while preserving newly arrived-user throughput in multi rate WLAN system. In our algorithm, newly arrived users cooperate with a wireless local area network (WLAN) system they are trying to use, i.e., they are willing to move toward an appropriate AP before the newly arrived user connects to AP. To select the AP by using our AP selection algorithm, the newly arriving users request two novel parameter values, “the minimum acceptable throughput” with which newly arrived users can be satisfied and “the minimum movable distance” in which a user can move to an appropriate AP. While preserving these conditions, we maximize system throughput. When users cannot obtain a throughput greater than “the minimum acceptable throughput” with our proposed AP selection algorithm, they are rejected. Because, if users use streaming applications, which have strict bandwidth demands, with a very low bit-rate connection, they will not be satisfied. Thus, the newly arrived users having low bit-rate connection may be allowed to be rejected before the newly arrived user connects. In this paper, we show the optimal AP by using theoretical proof. We discuss the effectiveness of our proposed AP selection algorithm by using numerical analysis. We also clarify and analyze the characteristics of system throughput. Moreover, we show that a newly arrived user can select the movable distance and acceptable throughput by using examples from graphs depicting every position of newly arrived users. By using the graphs, we also show the relationship between the two parameters (the movable distance and the acceptable throughput) and the optimal AP, and the relationship between the two parameters and optimal system throughput when the movable distance and acceptable throughput are variable.