The search functionality is under construction.

Author Search Result

[Author] Kenji KANAI(7hit)

1-7hit
  • Intelligent Video Surveillance System Based on Event Detection and Rate Adaptation by Using Multiple Sensors

    Kenji KANAI  Keigo OGAWA  Masaru TAKEUCHI  Jiro KATTO  Toshitaka TSUDA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    688-697

    To reduce the backbone video traffic generated by video surveillance, we propose an intelligent video surveillance system that offers multi-modal sensor-based event detection and event-driven video rate adaptation. Our proposed system can detect pedestrian existence and movements in the monitoring area by using multi-modal sensors (camera, laser scanner and infrared distance sensor) and control surveillance video quality according to the detected events. We evaluate event detection accuracy and video traffic volume in the experiment scenarios where up to six pedestrians pass through and/or stop at the monitoring area. Evaluation results conclude that our system can significantly reduce video traffic while ensuring high-quality surveillance.

  • HOAH: A Hybrid TCP Throughput Prediction with Autoregressive Model and Hidden Markov Model for Mobile Networks

    Bo WEI  Kenji KANAI  Wataru KAWAKAMI  Jiro KATTO  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1612-1624

    Throughput prediction is one of the promising techniques to improve the quality of service (QoS) and quality of experience (QoE) of mobile applications. To address the problem of predicting future throughput distribution accurately during the whole session, which can exhibit large throughput fluctuations in different scenarios (especially scenarios of moving user), we propose a history-based throughput prediction method that utilizes time series analysis and machine learning techniques for mobile network communication. This method is called the Hybrid Prediction with the Autoregressive Model and Hidden Markov Model (HOAH). Different from existing methods, HOAH uses Support Vector Machine (SVM) to classify the throughput transition into two classes, and predicts the transmission control protocol (TCP) throughput by switching between the Autoregressive Model (AR Model) and the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). We conduct field experiments to evaluate the proposed method in seven different scenarios. The results show that HOAH can predict future throughput effectively and decreases the prediction error by a maximum of 55.95% compared with other methods.

  • A Fully-Blind and Fast Image Quality Predictor with Convolutional Neural Networks

    Zhengxue CHENG  Masaru TAKEUCHI  Kenji KANAI  Jiro KATTO  

     
    PAPER-Image

      Vol:
    E101-A No:9
      Page(s):
    1557-1566

    Image quality assessment (IQA) is an inherent problem in the field of image processing. Recently, deep learning-based image quality assessment has attracted increased attention, owing to its high prediction accuracy. In this paper, we propose a fully-blind and fast image quality predictor (FFIQP) using convolutional neural networks including two strategies. First, we propose a distortion clustering strategy based on the distribution function of intermediate-layer results in the convolutional neural network (CNN) to make IQA fully blind. Second, by analyzing the relationship between image saliency information and CNN prediction error, we utilize a pre-saliency map to skip the non-salient patches for IQA acceleration. Experimental results verify that our method can achieve the high accuracy (0.978) with subjective quality scores, outperforming existing IQA methods. Moreover, the proposed method is highly computationally appealing, achieving flexible complexity performance by assigning different thresholds in the saliency map.

  • D2EcoSys: Decentralized Digital Twin EcoSystem Empower Co-Creation City-Level Digital Twins Open Access

    Kenji KANAI  Hidehiro KANEMITSU  Taku YAMAZAKI  Shintaro MORI  Aram MINE  Sumiko MIYATA  Hironobu IMAMURA  Hidenori NAKAZATO  

     
    INVITED PAPER

      Pubricized:
    2023/10/26
      Vol:
    E107-B No:1
      Page(s):
    50-62

    A city-level digital twin is a critical enabling technology to construct a smart city that helps improve citizens' living conditions and quality of life. Currently, research and development regarding the digital replica city are pursued worldwide. However, many research projects only focus on creating the 3D city model. A mechanism to involve key players, such as data providers, service providers, and application developers, is essential for constructing the digital replica city and producing various city applications. Based on this motivation, the authors of this paper are pursuing a research project, namely Decentralized Digital Twin EcoSystem (D2EcoSys), to create an ecosystem to advance (and self-grow) the digital replica city regarding time and space directions, city services, and values. This paper introduces an overview of the D2EcoSys project: vision, problem statement, and approach. In addition, the paper discusses the recent research results regarding networking technologies and demonstrates an early testbed built in the Kashiwa-no-ha smart city.

  • Methods for Adaptive Video Streaming and Picture Quality Assessment to Improve QoS/QoE Performances Open Access

    Kenji KANAI  Bo WEI  Zhengxue CHENG  Masaru TAKEUCHI  Jiro KATTO  

     
    INVITED PAPER

      Pubricized:
    2019/01/22
      Vol:
    E102-B No:7
      Page(s):
    1240-1247

    This paper introduces recent trends in video streaming and four methods proposed by the authors for video streaming. Video traffic dominates the Internet as seen in current trends, and new visual contents such as UHD and 360-degree movies are being delivered. MPEG-DASH has become popular for adaptive video streaming, and machine learning techniques are being introduced in several parts of video streaming. Along with these research trends, the authors also tried four methods: route navigation, throughput prediction, image quality assessment, and perceptual video streaming. These methods contribute to improving QoS/QoE performance and reducing power consumption and storage size.

  • Energy-Efficient Mobile Video Delivery Utilizing Moving Route Navigation and Video Playout Buffer Control

    Kenji KANAI  Sakiko TAKENAKA  Jiro KATTO  Tutomu MURASE  

     
    PAPER

      Pubricized:
    2018/01/22
      Vol:
    E101-B No:7
      Page(s):
    1635-1644

    Because mobile users demand a high quality and energy-friendly video delivery service that efficiently uses wireless resources, we introduce an energy-efficient video delivery system by applying moving route navigation and playout buffer control based on the mobile throughput history data. The proposed system first determines the optimal travel route to achieve high-speed and energy-efficient communications. Then when a user enters a high throughput area, our system temporarily extends the video playout buffer size, and the user aggressively downloads video segments via a high-speed and energy-efficient wireless connection until the extended buffer is filled. After leaving this area, the user consumes video segments from the extended buffer in order to keep smooth video playback without wireless communications. We carry out computer simulations, laboratory and field experiments and confirm that the proposed system can achieve energy-efficient mobile video delivery.

  • A Highly Accurate Transportation Mode Recognition Using Mobile Communication Quality

    Wataru KAWAKAMI  Kenji KANAI  Bo WEI  Jiro KATTO  

     
    PAPER

      Pubricized:
    2018/10/15
      Vol:
    E102-B No:4
      Page(s):
    741-750

    To recognize transportation modes without any additional sensor devices, we demonstrate that the transportation modes can be recognized from communication quality factors. In the demonstration, instead of using global positioning system (GPS) and accelerometer sensors, we collect mobile TCP throughputs, received-signal strength indicators (RSSIs), and cellular base-station IDs (Cell IDs) through in-line network measurement when the user enjoys mobile services, such as video streaming. In accuracy evaluations, we conduct two different field experiments to collect the data in six typical transportation modes (static, walking, riding a bicycle, riding a bus, riding a train and riding a subway), and then construct the classifiers by applying a support-vector machine (SVM), k-nearest neighbor (k-NN), random forest (RF), and convolutional neural network (CNN). Our results show that these transportation modes can be recognized with high accuracy by using communication quality factors as well as the use of accelerometer sensors.