The search functionality is under construction.

Author Search Result

[Author] Masaru TAKEUCHI(4hit)

1-4hit
  • Methods for Adaptive Video Streaming and Picture Quality Assessment to Improve QoS/QoE Performances Open Access

    Kenji KANAI  Bo WEI  Zhengxue CHENG  Masaru TAKEUCHI  Jiro KATTO  

     
    INVITED PAPER

      Pubricized:
    2019/01/22
      Vol:
    E102-B No:7
      Page(s):
    1240-1247

    This paper introduces recent trends in video streaming and four methods proposed by the authors for video streaming. Video traffic dominates the Internet as seen in current trends, and new visual contents such as UHD and 360-degree movies are being delivered. MPEG-DASH has become popular for adaptive video streaming, and machine learning techniques are being introduced in several parts of video streaming. Along with these research trends, the authors also tried four methods: route navigation, throughput prediction, image quality assessment, and perceptual video streaming. These methods contribute to improving QoS/QoE performance and reducing power consumption and storage size.

  • Intelligent Video Surveillance System Based on Event Detection and Rate Adaptation by Using Multiple Sensors

    Kenji KANAI  Keigo OGAWA  Masaru TAKEUCHI  Jiro KATTO  Toshitaka TSUDA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    688-697

    To reduce the backbone video traffic generated by video surveillance, we propose an intelligent video surveillance system that offers multi-modal sensor-based event detection and event-driven video rate adaptation. Our proposed system can detect pedestrian existence and movements in the monitoring area by using multi-modal sensors (camera, laser scanner and infrared distance sensor) and control surveillance video quality according to the detected events. We evaluate event detection accuracy and video traffic volume in the experiment scenarios where up to six pedestrians pass through and/or stop at the monitoring area. Evaluation results conclude that our system can significantly reduce video traffic while ensuring high-quality surveillance.

  • A Fully-Blind and Fast Image Quality Predictor with Convolutional Neural Networks

    Zhengxue CHENG  Masaru TAKEUCHI  Kenji KANAI  Jiro KATTO  

     
    PAPER-Image

      Vol:
    E101-A No:9
      Page(s):
    1557-1566

    Image quality assessment (IQA) is an inherent problem in the field of image processing. Recently, deep learning-based image quality assessment has attracted increased attention, owing to its high prediction accuracy. In this paper, we propose a fully-blind and fast image quality predictor (FFIQP) using convolutional neural networks including two strategies. First, we propose a distortion clustering strategy based on the distribution function of intermediate-layer results in the convolutional neural network (CNN) to make IQA fully blind. Second, by analyzing the relationship between image saliency information and CNN prediction error, we utilize a pre-saliency map to skip the non-salient patches for IQA acceleration. Experimental results verify that our method can achieve the high accuracy (0.978) with subjective quality scores, outperforming existing IQA methods. Moreover, the proposed method is highly computationally appealing, achieving flexible complexity performance by assigning different thresholds in the saliency map.

  • Mitigate: Toward Comprehensive Research and Development for Analyzing and Combating IoT Malware

    Koji NAKAO  Katsunari YOSHIOKA  Takayuki SASAKI  Rui TANABE  Xuping HUANG  Takeshi TAKAHASHI  Akira FUJITA  Jun'ichi TAKEUCHI  Noboru MURATA  Junji SHIKATA  Kazuki IWAMOTO  Kazuki TAKADA  Yuki ISHIDA  Masaru TAKEUCHI  Naoto YANAI  

     
    INVITED PAPER

      Pubricized:
    2023/06/08
      Vol:
    E106-D No:9
      Page(s):
    1302-1315

    In this paper, we developed the latest IoT honeypots to capture IoT malware currently on the loose, analyzed IoT malware with new features such as persistent infection, developed malware removal methods to be provided to IoT device users. Furthermore, as attack behaviors using IoT devices become more diverse and sophisticated every year, we conducted research related to various factors involved in understanding the overall picture of attack behaviors from the perspective of incident responders. As the final stage of countermeasures, we also conducted research and development of IoT malware disabling technology to stop only IoT malware activities in IoT devices and IoT system disabling technology to remotely control (including stopping) IoT devices themselves.