1-1hit |
Sungjae KIM Hyungwoo LEE Juho KIM
We present an efficient heuristic algorithm to reduce glitch power dissipation in CMOS digital circuits. In this paper, gate sizing is classified into three types and the buffer insertion is classified into two types. The proposed algorithm combines three types of gate sizing and two types of buffer insertion into a single optimization process to maximize the glitch reduction. The efficiency of our algorithm has been verified on LGSynth91 benchmark circuits with a 0.5 µm standard cell library. Experimental results show an average of 69.98% glitch reduction and 28.69% power reduction that are much better than those of gate sizing and buffer insertion performed independently.